Skip to main content

Advertisement

Log in

Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The single-point incremental forming process is an emerging process, which presents an alternative to the conventional sheet metal-forming processes like stamping and drawing. It is known to be perfectly suited for prototyping and small series. The incremental forming process offers the possibility of manufacturing medical prosthesis or implants specific to each patient, which are more comfortable and guarantee better performance. A reverse engineering approach associated with single-point incremental forming process in order to produce a titanium prosthesis of human skull is developed. It allows guaranteeing the high degree of customization required. In this paper, several novel warm forming experimental setup equipped with instruments to measure efforts and temperature monitoring is proposed. This new warm setup is feasible and makes it easy to monitor force and temperature sheet at forming; it gives it the ability to be exploited in the industry of manufacturing titanium alloy medical shapes. The real geometry of a skull prosthesis is re-constructed from a laser scanning technique, and specific treatments are performed until a CAD model is obtained. From it, the forming punch trajectories have been defined, and skull prostheses are manufactured using the technology of single-point incremental forming in titanium material at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Chen X, Liu Z, Sun J, Li F, Li J, Zhao G (2017) A review on the recent development of incremental sheet-forming process. Int J Adv Manuf Technol 92:2439–2462. https://doi.org/10.1007/s00170-017-0251-z

    Article  Google Scholar 

  2. Kurra S, Hifzur Rahman N, Regalla SP, Gupta AK (2015) Modeling and optimization of surface roughness in single point incremental forming process. J Mater Res Technol 4:304–313. https://doi.org/10.1016/j.jmrt.2015.01.003

    Article  Google Scholar 

  3. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. CIRP Ann 54:88–114. https://doi.org/10.1016/S0007-8506(07)60021-3

    Article  Google Scholar 

  4. Ambrogio G, De Napoli L, Filice L et al (2005) Application of incremental forming process for high customised medical product manufacturing. J Mater Process Technol 162–163:156–162. https://doi.org/10.1016/j.jmatprotec.2005.02.148

    Article  Google Scholar 

  5. Bagudanch I, Garcia-Romeu ML, Centeno G, Elías-Zúñiga A, Ciurana J (2015) Forming force and temperature effects on single point incremental forming of polyvinylchloride. J Mater Process Technol 219:221–229. https://doi.org/10.1016/j.jmatprotec.2014.12.004

    Article  Google Scholar 

  6. Liu Z, Daniel WJT, Li Y, Liu S, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Technol 214:620–634. https://doi.org/10.1016/j.jmatprotec.2013.11.010

    Article  Google Scholar 

  7. Honarpisheh M, Mohammadi Jobedar M, Alinaghian I (2018) Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. Int J Adv Manuf Technol 96:3069–3080. https://doi.org/10.1007/s00170-018-1812-5

    Article  Google Scholar 

  8. Saidi B, Boulila A, Ayadi M, Nasri R (2015) Experimental force measurements in single point incremental sheet forming SPIF. Mech Ind 16:410. https://doi.org/10.1051/meca/2015018

    Article  Google Scholar 

  9. Saidi B, Giraud-Moreau L, Cherouat A, Nasri R (2017) Experimental and numerical study on optimization of the single point incremental forming of AINSI 304L stainless steel sheet. J Phys Conf Ser 896:012039. https://doi.org/10.1088/1742-6596/896/1/012039

    Article  Google Scholar 

  10. Durante M, Formisano A, Langella A (2010) Comparison between analytical and experimental roughness values of components created by incremental forming. J Mater Process Technol 210:1934–1941. https://doi.org/10.1016/j.jmatprotec.2010.07.006

    Article  Google Scholar 

  11. Dakhli M, Boulila A, Tourki Z (2017) Effect of generatrix profile on single-point incremental forming parameters. Int J Adv Manuf Technol 93:2505–2516. https://doi.org/10.1007/s00170-017-0598-1

    Article  Google Scholar 

  12. Mohammadi A, Vanhove H, Van Bael A, Duflou JR (2016) Towards accuracy improvement in single point incremental forming of shallow parts formed under laser assisted conditions. Int J Mater Form 9:339–351. https://doi.org/10.1007/s12289-014-1203-x

    Article  Google Scholar 

  13. Honarpisheh M, Abdolhoseini MJ, Amini S (2016) Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol 83:2027–2037. https://doi.org/10.1007/s00170-015-7717-7

    Article  Google Scholar 

  14. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann 57:257–260. https://doi.org/10.1016/j.cirp.2008.03.066

    Article  Google Scholar 

  15. Ji YH, Park JJ (2008) Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. J Mater Process Technol 201:354–358. https://doi.org/10.1016/j.jmatprotec.2007.11.206

    Article  Google Scholar 

  16. Silva PJ, Alvares AJ (2015) Incremental sheet forming of aluminum with warm. IEEE, pp 808–811

  17. Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189:65–72. https://doi.org/10.1016/j.jmatprotec.2007.01.005

    Article  Google Scholar 

  18. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49:941–947. https://doi.org/10.1007/s00170-009-2472-2

    Article  Google Scholar 

  19. Göttmann A, Diettrich J, Bergweiler G, Bambach M, Hirt G, Loosen P, Poprawe R (2011) Laser-assisted asymmetric incremental sheet forming of titanium sheet metal parts. Prod Eng 5:263–271. https://doi.org/10.1007/s11740-011-0299-9

    Article  Google Scholar 

  20. Buffa G, Campanella D, Fratini L (2013) On the improvement of material formability in SPIF operation through tool stirring action. Int J Adv Manuf Technol 66:1343–1351. https://doi.org/10.1007/s00170-012-4412-9

    Article  Google Scholar 

  21. Hino R, Kawabata K, Yoshida F (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. Procedia Eng 81:2330–2335. https://doi.org/10.1016/j.proeng.2014.10.329

    Article  Google Scholar 

  22. Xu D, Lu B, Cao T, Chen J, Long H, Cao J (2014) A comparative study on process potentials for frictional stir- and electric hot-assisted incremental sheet forming. Procedia Eng 81:2324–2329. https://doi.org/10.1016/j.proeng.2014.10.328

    Article  Google Scholar 

  23. Gulati M, Anand V, Salaria S, Jain N, Gupta S (2015) Computerized implant-dentistry: advances toward automation. J Indian Soc Periodontol 19:5–10. https://doi.org/10.4103/0972-124X.145781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Badreddine Saidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, B., Giraud Moreau, L., Mhemed, S. et al. Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach. Int J Adv Manuf Technol 101, 873–880 (2019). https://doi.org/10.1007/s00170-018-2975-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2975-9

Keywords

Navigation