Skip to main content

Experimental Investigation on Electrically Assisted Incremental Sheet Metal Forming of Ti–6Al–4V Alloy

  • Conference paper
  • First Online:
Materials, Design, and Manufacturing for Sustainable Environment

Abstract

Electrically Assisted Incremental Sheet Metal Forming (EAISMF) is a die-less forming technique to deform the hard to form sheet metals into complex three-dimensional shapes by a series of small incremental local deformations. A lightweight alloy like Ti–6Al–4V titanium alloy has enormous applications in aerospace, automobile, and biomedical industries. Although Ti–6Al–4V alloy can be formed at high temperatures, the formability of the material achieved by EAISMF process has to be identified for industrial application. In the present research, the formability of Ti–6Al–4V alloy in EAISMF process was investigated by forming a truncated cone under consideration of different process parameters such as tool diameter, sheet thickness, temperature, and wall angle. Taguchi L9 orthogonal array was employed for an experimental investigation to identify the influencing process parameter on the formability of the material during EAISMF process. The result shows that temperature is a key influencing parameter on the formability of Ti–6Al–4V sheet metal, where an increase in temperature limits the force required for plastic deformation and improves the formability of sheet metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmens WC, Sebastiani G, van den BoogaardA H (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Technol 210(8):981–997

    Article  Google Scholar 

  2. Vahdani M, Mirnia MJ, Bakhshi-Jooybari M, Gorji H (2019) Electric hot incremental sheet forming of Ti-6Al-4V titanium, AA6061 aluminum, and DC01 steel sheets. Int J Adv Manuf Technol 103:1199

    Article  Google Scholar 

  3. Honarpisheh M, Abdolhoseini MJ, Amini S (2016) Experimental and numerical investigation of the hot incremental forming of Ti-6Al-4V sheet using electrical current. Int J Adv Manuf Technol 83:2027–2037

    Google Scholar 

  4. Pacheco PAP, Silveira ME, Silva JA (2019) Heat distribution in electric hot incremental sheet forming. Int J Adv Manuf Technol 102:991

    Article  Google Scholar 

  5. Li Z, Lu S, Zhang T, Zhang C, Mao Z (2018) Electric assistance hot incremental sheet forming: an integral heating design. Int J Adv Manuf Technol 96:3209–3215

    Google Scholar 

  6. Saidi B, Giraud Moreau L, Mhemed S, Cherouat A, Adragna PA, Nasri R (2019) Hot incremental forming of titanium human skull prosthesis by using cartridge heaters: a reverse engineering approach. Int J Adv Manuf Technol 101:873–880

    Article  Google Scholar 

  7. Hagan E, Jeswiet J (2003) Effect of wall angle on Al 3003 strain hardening for parts formed by computer numerical control incremental forming. Proc IMechE Part B: J Eng Manuf 217(11):1571–1579

    Google Scholar 

  8. SilvaM B, SkjoedtM AG, BayN MAF (2008) Single-point incremental forming and formability-failure diagrams. J Strain Anal Eng 43(1):15–35

    Article  Google Scholar 

  9. Aerens R, Eyckens P, Duflou JR, VanBael A (2010) Force prediction for single point incremental forming deduced from experiment and FEM observation. Int J Adv Manuf Technol 46:969–982

    Article  Google Scholar 

  10. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Electric hot incremental forming of Ti-6Al-4V titanium sheet. Int J Adv Manuf Technol 49:941–947

    Article  Google Scholar 

  11. Amrut M, Ben S, Ismail S, Kocanda A (2017) Experimental investigations into the effects of SPIF forming conditions on surface roughness and formability by design of experiments. J Braz Soc Mech Sci Eng 39:3997–4010

    Article  Google Scholar 

  12. Joshua JJ, Mears L (2013) Thermal response modeling of sheet metals in uniaxial tension during electrically assisted forming. J Manuf Sci Eng 135(2):021011–021022

    Google Scholar 

  13. Zhang X, He T, Miwa H, Nanbu T, Murakami R, Liu S, Cao J, Wang QJ (2019) A new approach for analyzing the temperature rise and heat partition at the interface of coated tool tip-sheet incremental forming systems. Int J Heat Mass Transf 129:1172–1183

    Article  Google Scholar 

  14. Magnus CS (2017) Joule heating of the forming zone in incremental sheet metal forming: Part 1. Int J Adv Manuf Technol 91:1309–1319

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohanraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohanraj, R., Elangovan, S., Shanmathy, A.R. (2021). Experimental Investigation on Electrically Assisted Incremental Sheet Metal Forming of Ti–6Al–4V Alloy. In: Mohan, S., Shankar, S., Rajeshkumar, G. (eds) Materials, Design, and Manufacturing for Sustainable Environment. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9809-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9809-8_30

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9808-1

  • Online ISBN: 978-981-15-9809-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics