Skip to main content
Log in

Process Parameter Enhancement for Incremental Forming of Titanium Ti–6Al–4V Truncated Cone with Varying Wall Angle at Elevated Temperatures

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In the present investigation, the effects of the initial temperature of the sheet, tool diameter and vertical pitch on the final temperature, drawing depth, forming limit diagrams and thickness reduction, resulted from warm incremental forming of titanium sheets are investigated using the Taguchi method. The geometry of a truncated cone with varying wall angle was used for further reduction in the necessary experiments, materials and time. It was shown that any growth in the initial temperature of the sheet or vertical pitch would enhance the formability of the sheet due to the metal softening. The vertical pitch was also the main factor in increasing the final temperature, whereas the tool diameter was the most effective parameter for improving the drawing depth, the average of the major strains and thickness reduction. Moreover, the Sine law was applicable for estimation of final thickness of the incrementally deformed sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. CIRP Annals-Manufacturing Technology, 54, 88–114.

    Article  Google Scholar 

  2. Ambrogio, G., Filice, L., & Manco, G. (2008). Warm incremental forming of magnesium alloy AZ31. CIRP Annals-Manufacturing Technology, 57(1), 257–260.

    Article  Google Scholar 

  3. Ji, Y., & Park, J. (2008). Formability of magnesium AZ31 sheet in the incremental forming at warm temperature. Journal of Materials Processing Technology, 201, 354–358.

    Article  Google Scholar 

  4. Ji, Y., & Park, J. (2008). Incremental forming of free surface with magnesium alloy AZ31 sheet at warm temperatures. Transactions of Nonferrous Metals Society of China, 18, 165–169.

    Article  Google Scholar 

  5. Palumbo, G., & Brandizzi, M. (2012). Experimental investigations on the single point incremental forming of a titanium alloy component combining static heating with high tool rotation speed. Materials and Design, 40, 43–51.

    Article  Google Scholar 

  6. Hussain, G., & Gao, L. (2007). A novel method to test the thinning limits of sheet metals in negative incremental forming. International Journal of Machine Tools and Manufacture, 47, 419–435.

    Article  Google Scholar 

  7. Hussain, G., Gao, L., Hayat, N., Cui, Z., Pang, Y., & Dar, N. (2008). Tool and lubrication for negative incremental forming of a commercially pure titanium sheet. Journal of Materials Processing Technology, 203, 193–201.

    Article  Google Scholar 

  8. Hussain, G., Gao, L., Hayat, N., & Qijian, L. (2007). The effect of variation in the curvature of part on the formability in incremental forming: An experimental investigation. International Journal of Machine Tools and Manufacture, 47, 2177–2181.

    Article  Google Scholar 

  9. Hussain, G., Gao, L., & Zhang, Z. (2008). Formability evaluation of a pure titanium sheet in the cold incremental forming process. International Journal of Advanced Manufacturing Technology, 37, 920–926.

    Article  Google Scholar 

  10. Jin, W., Bao-ping, W., Long, T., & Hu-seng, J. (2012). Study on possibility of processing trip steel sheet by single point incremental forming. In International conference on mechanical engineering and material science, Shanghai, China (pp. 251–262).

  11. Kurra, S., & Regalla, S. (2015). Multi-objective optimisation of single point incremental sheet forming using Taguchi-based grey relational analysis. International Journal of Materials Engineering Innovation, 6, 74–90.

    Article  Google Scholar 

  12. Hussain, G., Gao, L., Hayat, N., & Ziran, X. (2009). A new formability indicator in single point incremental forming. Journal of Materials Processing Technology, 209, 4237–4242.

    Article  Google Scholar 

  13. Hussain, G., Lin, G., Hayat, N., Dar, N. U., & Iqbal, A. (2010). New methodologies for the determination of precise forming limit curve in single point incremental forming process. Advanced Materials Research, 97–101, 126–129.

    Article  Google Scholar 

  14. Centeno, G., Silva, M., Cristino, V., Vallellano, C., & Martins, P. (2012). Hole-flanging by incremental sheet forming. International Journal of Machine Tools and Manufacture, 59, 46–54.

    Article  Google Scholar 

  15. Ambrogio, G., Bruschi, S., Ghiotti, A., & Filice, L. (2009). Formability of Az31 magnesium alloy in warm incremental forming process. International Journal of Material Forming, 2, 5–8.

    Article  Google Scholar 

  16. Kopac, J., & Kampus, Z. (2005). Incremental sheet metal forming on CNC milling machine-tool. Journal of Materials Processing Technology, 162, 622–628.

    Article  Google Scholar 

  17. Yamashita, M., Gotoh, M., & Atsumi, S.-Y. (2008). Numerical simulation of incremental forming of sheet metal. Journal of Materials Processing Technology, 199, 163–172.

    Article  Google Scholar 

  18. Liu, Z. B., Li, Y. L., Daniel, W. J. T. B., & Meehan, P. (2014). Taguchi optimization of process parameters for forming time in incremental sheet forming process. Materials Science Forum, 773(774), 137–143.

    Google Scholar 

  19. Ashrafi, A., & Khalili, K. (2016). Investigation on the effects of process parameters in pulsating hydroforming using Taguchi method. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(7), 1230–1212.

    Article  Google Scholar 

  20. Hwang, S. Y., Kim, N., & Lee, C.-S. (2015). Numerical investigation on the effect of process parameters during aluminum wheel flow-forming. Strojniški vestnik-Journal of Mechanical Engineering, 61, 471–476.

    Article  Google Scholar 

  21. Jeong, H., Cheon, S., Hong, S., & Kim, N. (2015). Preform design of hybrid-forming process to make sheet metal it products with a sharp edge. Journal of Mechanical Science and Technology, 29, 2467–2475.

    Article  Google Scholar 

  22. Kurra, S., & Regalla, S. P. (2014). Experimental and numerical studies on formability of extra-deep drawing steel in incremental sheet metal forming. Journal of Materials Research and Technology, 3, 158–171.

    Article  Google Scholar 

  23. Majagi, S. D., Chandramohan, G., & Kumar, M. S. (2015). Effect of incremental forming process parameters on aluminum alloy using experimental studies. Advanced Materials Research, 1119, 633–639.

    Article  Google Scholar 

  24. Raju, C., & Narayanan, C. S. (2016). Application of a hybrid optimization technique in a multiple sheet single point incremental forming process. Measurement, 78, 296–308.

    Article  Google Scholar 

  25. Khazaali, H., & Fereshteh-Saniee, F. (2016). A comprehensive experimental investigation on the influences of the process variables on warm incremental forming of Ti–6Al–4V titanium alloy using a simple technique. International Journal of Advanced Manufacturing Technology, 87, 2911–2923.

    Article  Google Scholar 

  26. Hussain, G., Dar, N., Gao, L., & Chen, M. (2007). A comparative study on the forming limits of an aluminum sheet-metal in negative incremental forming. Journal of Materials Processing Technology, 187, 94–98.

    Article  Google Scholar 

  27. Aminzahed, I., Mashhadi, M. M., & Sereshk, M. R. V. (2017). Investigation of holder pressure and size effects in micro deep drawing of rectangular work pieces driven by piezoelectric actuator. Materials Science and Engineering C, 71, 685–689.

    Article  Google Scholar 

  28. Aminzahed, I., Mashhadi, M. M., & Sereshk, M. R. V. (2017). Influence of drawn radius in micro deep drawing process of rectangular work pieces via size dependent analysis using piezoelectric actuator. International Journal on Interactive Design and Manufacturing, 11(4), 893–902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Fereshteh-Saniee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaali, H., Fereshteh-Saniee, F. Process Parameter Enhancement for Incremental Forming of Titanium Ti–6Al–4V Truncated Cone with Varying Wall Angle at Elevated Temperatures. Int. J. Precis. Eng. Manuf. 20, 769–776 (2019). https://doi.org/10.1007/s12541-019-00097-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00097-x

Keywords

Navigation