Skip to main content
Log in

Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The abrasive erosion mechanism in ultrasonic assisted abrasive waterjet machining is investigated in the present study. The process was theoretically analyzed and a numerical model for the abrasive particle impact process considering the target workpiece vibration was developed. A time-dependent load was imposed on the model boundary to apply the vibration. The model was utilized to investigate the response of target material with explicit dynamic method. Effects of ultrasonic vibration and other process parameters on the material removal and response such as residual stress were investigated. Analysis on erosion process by multiple particles in ultrasonic vibration assisted AWJ was also carried out. The model was finally verified by experiments. The results indicate that the application of ultrasonic vibration can enhance the material removal capacity of the abrasive particle and intensify the material deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberdi A, Rivero A, López de Lacalle LN (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480. https://doi.org/10.1007/s00170-010-2662-y

    Article  Google Scholar 

  2. Liu D, Zhu H, Huang C (2016) Prediction model of depth of penetration for alumina ceramics turned by abrasive waterjet—finite element method and experimental study. Int J Adv Manuf Technol 87:2673–2682. https://doi.org/10.1007/s00170-016-8600-x

    Article  Google Scholar 

  3. Feng Y, Wang JM, Fei HL (2011) Numerical simulation of single particle acceleration process by SPH coupled FEM for abrasive waterjet cutting. Int J Adv Manuf Technol 59:193–200. https://doi.org/10.1007/s00170-011-3495-z

    Article  Google Scholar 

  4. Hou R, Huang C, Zhu H (2014) Numerical simulation ultrahigh waterjet (WJ) flow field with the high-frequency velocity vibration at the nozzle inlet. Int J Adv Manuf Technol 71:1087–1092. https://doi.org/10.1007/s00170-013-5493-9

    Article  Google Scholar 

  5. Hou R, Huang C, Zhu H (2017) Experimental study on pulsation behavior of the ultrasonic vibration-assisted abrasive waterjet. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-017-0011-0

  6. Finnie I (1972) Some observations on the erosion of ductile metals. Wear 19:81–90. https://doi.org/10.1016/0043-1648(72)90444-9

    Article  Google Scholar 

  7. Bitter J (1963) A study of erosion phenomena part II. Wear 6:169–190. https://doi.org/10.1016/0043-1648(63)90073-5

    Article  Google Scholar 

  8. Hutchings IM, Winter RE (1974) Particle erosion of ductile metals: a mechanism of material removal. Wear 27:121–128. https://doi.org/10.1016/0043-1648(74)90091-X

    Article  Google Scholar 

  9. Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193:207–217. https://doi.org/10.1016/0043-1648(95)06721-3

    Article  Google Scholar 

  10. Slikkerveer PJ, Bouten PCP, in’t Veld FH, Scholten H (1998) Erosion and damage by sharp particles. Wear 217:237–250. https://doi.org/10.1016/S0043-1648(98)00187-2

    Article  Google Scholar 

  11. Zhu HT, Huang CZ, Wang J, Che CL, Li QL (2009) Experimental study on abrasive waterjet polishing for hard-brittle materials. Int J Mach Tools Manuf 49:569–578. https://doi.org/10.1016/j.ijmachtools.2009.02.005

    Article  Google Scholar 

  12. Woytowitz PJ, Richman RH (1999) Modeling of damage from multiple impacts by spherical particles. Wear 233:120–133

    Article  Google Scholar 

  13. ElTobgy MS, Ng E, Elbestawi MA (2005) Finite element modeling of erosive wear. Int J Mach Tools Manuf 45:1337–1346. https://doi.org/10.1016/j.ijmachtools.2005.01.007

    Article  Google Scholar 

  14. Junkar M, Jurisevic B, Fajdiga M, Grah M (2006) Finite element analysis of single-particle impact in abrasive water jet machining. Int J Impact Eng 32:1095–1112. https://doi.org/10.1016/j.ijimpeng.2004.09.006

    Article  Google Scholar 

  15. Li WY, Wang J, Zhu H, Li H (2013) On ultrahigh velocity micro-particle impact on steels—a single impact study. Wear 305:216–227. https://doi.org/10.1016/j.wear.2013.06.011

    Article  Google Scholar 

  16. Qi H, Fan J, Wang J, Li H (2016) On the erosion process on quartz crystals by the impact of multiple high-velocity micro-particles. Tribiol Int 95:462–474. https://doi.org/10.1016/j.triboint.2015.12.003

    Article  Google Scholar 

  17. Liu Y, Zhao H, Jing J, Wei S (2012) Investigation on the bonding strength patterns of ultrasonic vibration tools and influence on working performance during rotary ultrasonic grinding. Int J Adv Manuf Technol 65:533–541. https://doi.org/10.1007/s00170-012-4192-2

    Article  Google Scholar 

  18. Peng Y, Wu YB, Liang ZQ (2010) An experimental study of ultrasonic vibration-assisted grinding of polysilicon using two-dimensional vertical workpiece vibration. Int J Adv Manuf Technol 54:941–947. https://doi.org/10.1007/s00170-010-2991-x

    Article  Google Scholar 

  19. Nik MG, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP 1:353–358

    Article  Google Scholar 

  20. Zhou M, Wang X, Ngoi BK, Gan JG (2002) Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol 121:243–251. https://doi.org/10.1016/S0924-0136(01)01262-6

    Article  Google Scholar 

  21. Mulik RS, Pandey PM (2010) Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives. Int J Refract Met Hard Mater 29:68–77. https://doi.org/10.1016/j.ijrmhm.2010.08.002

    Article  Google Scholar 

  22. Lv Z, Huang C, Zhu H, Wang J, Hou R (2016) A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing. Int J Adv Manuf Technol 87:3091–3103. https://doi.org/10.1007/s00170-016-8722-1

    Article  Google Scholar 

  23. Lv Z, Huang C, Zhu H, Wang J, Yao P (2015) A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. Int J Adv Manuf Technol 78:1361–1369. https://doi.org/10.1007/s00170-014-6528-6

    Article  Google Scholar 

  24. Qi H, Wen D, Lu C, Li G (2016) Numerical and experimental study on ultrasonic vibration-assisted micro-channelling of glasses using an abrasive slurry jet. Int J Mech Sci 110:94–107. https://doi.org/10.1016/j.ijmecsci.2016.03.013

    Article  Google Scholar 

  25. Hashish M (1988) Visualization of the abrasive-waterjet cutting process. Exp Mech 28:159–169. https://doi.org/10.1007/BF02317567

    Article  Google Scholar 

  26. Slikkerveer PJ, Veld FHI (1999) Model for patterned erosion. Wear 217:237–250

    Article  Google Scholar 

  27. Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87–103. https://doi.org/10.1016/0043-1648(60)90055-7

    Article  Google Scholar 

  28. Johnson GR, Holmquist TJ, Beissel SR (2003) Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures. J Appl Phys 94:1639–1646. https://doi.org/10.1063/1.1589177

    Article  Google Scholar 

  29. Holmquist TJ, Templeton DW, Bishnoi KD (2001) Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications. Int J Impact Eng 25:211–231. https://doi.org/10.1016/S0734-743X(00)00046-4

    Article  Google Scholar 

  30. Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309:981–984. https://doi.org/10.1063/1.46199

    Article  Google Scholar 

  31. John O (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, California

    Google Scholar 

  32. Kumar N, Shukla M (2012) Finite element analysis of multi-particle impact on erosion in abrasive water jet machining of titanium alloy. In: J Comput Appl Math 236:4600–4610

  33. Wang YF, Yang ZG (2008) Finite element model of erosive wear on ductile and brittle materials. Wear 265:871–878. https://doi.org/10.1016/j.wear.2008.01.014

    Article  Google Scholar 

  34. Lv Z, Huang C, Zhu H, Wang J, Yao P (2015) FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol 78:1641–1649. https://doi.org/10.1007/s00170-014-6768-5

    Article  Google Scholar 

  35. Torres MAS, Voorwald HJC (2002) An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int J Fatigue 24:877–886. https://doi.org/10.1016/S0142-1123(01)00205-5

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51405274, 51375273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Hou, R., Huang, C. et al. Investigation on erosion mechanism in ultrasonic assisted abrasive waterjet machining. Int J Adv Manuf Technol 94, 3741–3755 (2018). https://doi.org/10.1007/s00170-017-0995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0995-5

Keywords

Navigation