Skip to main content
Log in

A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In the present study, the fluid field of the impinging jet on the workpiece surface in ultrasonic abrasive waterjet polishing (UA-AWJP) was simulated. The influences of the workpiece vibration on the pressure and velocity field of the impinging jet fluid field at the stagnation zone and the side flow zone were investigated. The impinging force on the vibration workpiece surface was experimentally measured. The results illustrated that, in the case of workpiece vibration, the stagnation is weakened due to the shearing action at the boundary layer and the impinging velocity is lower. Meanwhile, the velocity magnitude with asymmetric distribution is higher. The force fluctuation in the case of workpiece vibration is obviously stronger, while the mean value of the force is lower than that of the non-vibration condition. The measured data was in reasonable agreement with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberdi A, Rivero A, Lacalle LNLD, Etxeberria I, Suarez (2010) Effect of process parameter on the kerf geometry in abrasive water jet milling. Int J Adv Manuf Technol 51:467–480. doi:10.1007/s00170-010-2662-y

    Article  Google Scholar 

  2. El-Domiaty AA, Abdel-Rahman AA (1997) Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. Int J Adv Manuf Technol 13:172–181. doi:10.1007/BF01305869

    Article  Google Scholar 

  3. Paul S, Hoogstrate AM, van Luttervelt CA, Kals HJJ (1998) Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material. J Mater Process Technol 73:206–212. doi:10.1016/S0924-0136(97)00230-6

    Article  Google Scholar 

  4. Zhu HT, Huang CZ, Wang J, Li QL, Che CL (2009) Experimental study on abrasive waterjet polishing for hard–brittle materials. Int J Mach Tools Manuf 49:569–578. doi:10.1016/j.ijmachtools.2009.02.005

    Article  Google Scholar 

  5. Booij SM (2002) Nanometer deep shaping with fluid jet polishing. Opt Eng 41:1926–1931. doi:10.1117/1.1489677

    Article  Google Scholar 

  6. Razavi H, Nategh MJ, Abdullah A (2012) Analytical modeling and experimental investigation of ultrasonic-vibration assisted oblique turning, part III: experimental investigation. Int J Mech Sci 63:26–36. doi:10.1016/j.ijmecsci.2012.06.007

    Article  Google Scholar 

  7. Nik MG, Movahhedy MR, Akbari J (2012) Ultrasonic-assisted grinding of Ti6Al4V alloy. Procedia CIRP 1:353–358. doi:10.1016/j.procir.2012.04.063

    Article  Google Scholar 

  8. Mulik RS, Pandey PM (2011) Ultrasonic assisted magnetic abrasive finishing of hardened AISI 52100 steel using unbonded SiC abrasives. Int J Refract Met Hard Mater 29:68–77. doi:10.1016/j.ijrmhm.2010.08.002

    Article  Google Scholar 

  9. Zhou M, Wang X, Ngoi BK, Gan JG (2002) Brittle–ductile transition in the diamond cutting of glasses with the aid of ultrasonic vibration. J Mater Process Technol 121:243–251. doi:10.1016/S0924-0136(01)01262-6

    Article  Google Scholar 

  10. Suzuki H, Moriwaki T, Okino T, Ando Y (2006) Development of ultrasonic vibration assisted polishing machine for micro aspheric die and mold. CIRP Ann Manuf Technol 55:385–388. doi:10.1016/S0007-8506(07)60441-7

    Article  Google Scholar 

  11. Lv Z, Huang CZ, Zhu HT, Wang J, Wang Y, Yao P (2015) A research on ultrasonic-assisted abrasive waterjet polishing of hard-brittle materials. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6528-6

    Google Scholar 

  12. Lv Z, Huang CZ, Zhu HT, Wang J, Yao P, Liu ZW (2015) FEM analysis on the abrasive erosion process in ultrasonic-assisted abrasive waterjet machining. Int J Adv Manuf Technol. doi:10.1007/s00170-014-6768-5

    Google Scholar 

  13. Carrión M, Steijl R, Woodgate M, Barakos GN, Munduate X (2014) Aeroelastic analysis of wind turbines using a tightly coupled CFD–CSD method. J Fluids Struct 50:392–415. doi:10.1016/j.jfluidstructs.2014.06.029

    Article  Google Scholar 

  14. Schröder K, Gelbe H (1999) Two- and three-dimensional CFD-simulation of flow-induced vibration excitation in tube bundles. Chem Eng Process Process Intensif 38:621–629. doi:10.1016/S0255-2701(99)00063-X

    Article  Google Scholar 

  15. Surana KS, Blackwell B, Powell M, Reddy JN (2014) Mathematical models for fluid–solid interaction and their numerical solutions. J Fluids Struct 50:184–216. doi:10.1016/j.jfluidstructs.2014.06.023

    Article  Google Scholar 

  16. Liu H, Wang J, Kelson N, Brown RJ (2004) A study of abrasive waterjet characteristics by CFD simulation. J Mater Process Technol 153–154:488–493. doi:10.1016/j.jmatprotec.2004.04.037

    Article  Google Scholar 

  17. Annoni M, Arleo F, Malmassari C (2014) CFD aided design and experimental validation of an innovative Air Assisted Pure Water Jet cutting system. J Mater Process Technol 214:1647–1657. doi:10.1016/j.jmatprotec.2014.01.020

    Article  Google Scholar 

  18. Narayanan C, Balz R, Weiss DA, Heiniger KC (2013) Modelling of abrasive particle energy in water jet machining. J Mater Process Technol 213:2201–2210. doi:10.1016/j.jmatprotec.2013.06.020

    Article  Google Scholar 

  19. Liu H, Wang J, Brown R (2003) Computational fluid dynamics (CFD) simulation of ultrahigh velocity abrasive waterjet. Key Eng 236:477–482

    Article  Google Scholar 

  20. Momber A, Kovacevic R (1998) Principles of abrasive water jet machining. Springer, London

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, Z., Huang, C., Zhu, H. et al. A 3D simulation of the fluid field at the jet impinging zone in ultrasonic-assisted abrasive waterjet polishing. Int J Adv Manuf Technol 87, 3091–3103 (2016). https://doi.org/10.1007/s00170-016-8722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8722-1

Keywords

Navigation