Skip to main content
Log in

Evaluation of cold wire addition effect on heat input and productivity of tandem submerged arc welding for low-carbon microalloyed steels

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The addition of a cold wire in conventional tandem submerged arc welding (TSAW), i.e., the CWTSAW process, is proposed to improve the productivity of pipeline manufacturing by increasing welding travel speed and deposition rate, while retaining adequate joint geometry without increasing the welding heat input. In addition to increasing productivity, incorporating a cold wire in the TSAW process improves the fracture toughness by refining the microstructure of the weld heat-affected zone (HAZ). In the present work, the influence of cold-wire addition on the heat input, productivity and properties of an X70 microalloyed steel welded by CWTSAW is investigated. Charpy impact testing and microhardness testing were utilized to investigate the mechanical properties of the HAZ. Scanning electron microscopy (SEM) and tint etching optical microscopy (TEOM) were used to correlate the microstructure alterations with the properties. The low-temperature fracture toughness of the HAZ was improved by 38% when a cold wire was fed at 25.4 cm/min in the conventional TSAW process with a heat input of 22.1 kJ/cm. This improvement was attributed to a reduction in the prior austenite grain (PAG) size and martensite-austenite (M-A) constituent fraction as a result of the reduction in the effective heat input (7.5% reduction) by cold wire addition. The amount of heat input reduction is a function of the cold wire addition rate and the nominal welding heat input. The increase in travel speed and deposition rate of welding by addition of a cold wire at 58 cm/min in the TSAW process with a heat input of 23.2 kJ/cm was 26 and 12%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Viano DM, Ahmed NU, Schumann GO et al (2013) Influence of heat input and travel speed on microstructure and mechanical properties of double tandem submerged arc high strength low alloy steel weldments. Sci Technol Weld Join 5:26–34. doi:10.1179/stw.2000.5.1.26

    Article  Google Scholar 

  2. Zhang YQ, Zhang HQ, Li JF, Liu WM (2009) Effect of heat input on microstructure and toughness of coarse grain heat affected zone in Nb microalloyed HSLA steels. J Iron Steel Res Int 16:73–80. doi:10.1016/S1006-706X(10)60014-3

    Article  Google Scholar 

  3. Pepin JT (2009) Effects of submerged arc weld (SAW) parameters on bead geometry and notch-toughness for X70 and X80 linepipe steels. MSc Thesis, University of Alberta

  4. Fabricator (2010) Improving productivity with submerged arc welding (Technical Report). Fabr Manuf Assoc Intl, IL, 1-4

  5. Moeinifar S, Kokabi AH, Hosseini HRM (2011) Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel. J Mater Process Technol 211:368–375. doi:10.1016/j.jmatprotec.2010.10.011

    Article  Google Scholar 

  6. Kiran DV, Alam SA, De A (2013) Development of process maps in two-wire tandem submerged arc welding process of HSLA steel. J Mater Eng Perform 22:988–994. doi:10.1007/s11665-012-0381-2

    Article  Google Scholar 

  7. Thomas PD, Craig LA (1986) Automatic submerged arc welding with metal powder additions to increase productivity and maintain quality. Newport News Shipbuilding, Washington

    Google Scholar 

  8. Pepin J, Penniston C, Henein H et al (2012) Using semipenetration ratio to characterise effects of waveform variables on bead profile and heat affected zone with single electrode submerged arc welding. Can Metall Q 51:284–293. doi:10.1179/1879139512Y.0000000018

    Article  Google Scholar 

  9. Mruczek MF, Konkol PJ (2006) Cold wire feed submerged arc welding: technical report. Advanced Technology Institute (ATI), Johnstown

    Google Scholar 

  10. ESAB (2013) Submerged arc welding (Technical Handbook), TX, 1–94

  11. Massey S (2012) Increasing productivity with submerged arc welding. Columbus

  12. Beidokhti B, Kokabi AH, Dolati A (2014) A comprehensive study on the microstructure of high strength low alloy pipeline welds. J Alloys Compd 597:142–147. doi:10.1016/j.jallcom.2014.01.212

    Article  Google Scholar 

  13. Farhat H (2007) Effects of multiple wires and welding speed on the microstructures and properties of submerged arc welded X80 steel. PhD Diss. Univ. Saskatchewan

  14. Mruczek MF, Konkol PJ (2005) Twin-arc and cold-wire-feed submerged-arc welding of HSLA-100 steel. Conf Proceedings, Am Weld Soc

  15. Mohammadijoo M, Kenny S, Collins L et al (2016) Influence of cold-wire tandem submerged arc welding parameters on weld geometry and microhardness of microalloyed pipeline steels. Int J Adv Manuf Technol. doi:10.1007/s00170-016-8910-z

    Google Scholar 

  16. Mohammadijoo M, Kenny S, Collins L et al (2016) Effect of cold-wire addition in the TSAW process on microstructure and mechanical properties of the HAZ of X70 microalloyed pipeline steel. Am Soc Mech Eng 3:1–9. doi:10.1115/IPC2016-64549

    Google Scholar 

  17. ASTM (2012) E23-12C: standard test methods for notched bar impact testing of metallic materials. ASTM International, PA

    Google Scholar 

  18. ASTM (2012) E384: standard test method for knoop and vickers hardness of materials. ASTM Int. doi:10.1520/E0384-11E01.2

    Google Scholar 

  19. ASTM (2011) E3-11: standard guide for preparation of metallographic specimens. ASTM Int. doi:10.1520/E0003-11.2

    Google Scholar 

  20. LePera FS (1979) Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 12:263–268. doi:10.1016/0026-0800(79)90041-7

    Article  Google Scholar 

  21. ASTM (2011) E562-11: standard test method for determining volume fraction by systematic manual point count. ASTM Int. doi:10.1520/E0562-11.2

    Google Scholar 

  22. Rigdal S, Karlsson L, Östgren L (2002) Synergic cold wire (SCW™) submerged arc welding. ESAB Weld Cut J 57:26–31. doi:10.1007/978-3-319-26324-3

    Google Scholar 

  23. Ramakrishnan M,Muthupandi V (2013) Application of submerged arc welding technology with cold wire addition for drum shell long seam butt welds of pressure vessel components. Int J Adv Manuf Technol 65:945–956. doi:10.1007/s00170-012-4230-0

  24. Adarsh Narang V (2005) Heat transfer analysis in steel structures. Master Thesis, Worcester Polytechnic Institute, MA, USA

  25. Rokhlin SI, Guu AC (1993) A study of arc force, pool depression, and weld penetration during gas tungsten arc welding. Weld Res Suppl 72:381 s–390 s

  26. Adonyi Y, Richardson W, Baeslack WA (1992) Investigation of arc force effects in subsurface GTA welding. Weld Res Suppl 71:321 s– 699 330 s

  27. Halmoy E (1979) The pressure of the arc acting on the weld pool. Arc physics and weld pool behavior. The Welding Institute, Cambridge

    Google Scholar 

  28. Converti J (1981) Plasma-jets in arc welding. PhD Thesis, Massachusetts Institute of Technology

  29. Connor LP, O’Brien RL (1987) Welding handbook: welding technology. American Welding Society, Miami

    Book  Google Scholar 

  30. Bavaria agglomerated welding flux BF6.5. Technical Report. Bavaria Schweisstechnik, Germany. 6.5:1–4

  31. Easterling KE (1992) Introduction to the physical metallurgy of welding. Butterworth-Heinemann Ltd, Oxford

    Google Scholar 

  32. Poorhaydari K, Patchett BM, Ivey DG (2005) Estimation of Cooling Rate in the Welding of Plates with Intermediate Thickness. Weld Res 149 s–155 s

  33. Xia ZH, Wan XL, Tao XL, Wu KM (2012) Effect of heat input on toughness of coarse-grained heat-affected zone of an ultra low carbon acicular ferrite steel. Adv Mater Res 538–541:2003–2008. doi:10.4028/www.scientific.net/AMR.538-541.2003

    Article  Google Scholar 

  34. Yu L, Wang HH, Hou TP et al (2014) Characteristic of martensite-austenite constituents in coarse grained heat affected zone of HSLA steel with varying Al contents. Sci Technol Weld Join 19:708–714. doi:10.1179/1362171814Y.0000000246

    Article  Google Scholar 

  35. Li X, Ma X, Subramanian SV et al (2014) Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater Sci Eng A 616:141–147. doi:10.1016/j.msea.2014.07.100

    Article  Google Scholar 

  36. Li X, Fan Y, Ma X et al (2015) Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness. Mater Des 67:457–463. doi:10.1016/j.matdes.2014.10.028

    Article  Google Scholar 

  37. Davis CL, King JE (1993) Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel. Mater Sci Technol 9:8–15

    Article  Google Scholar 

  38. Davis CL, King JE (1994) Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone : part I. Fractographic evidence. Metall Mater Trans A 25:563–573. doi:10.1007/BF02651598

    Article  Google Scholar 

  39. Reichert JM, Garcin T, Militzer M, Poole WJ (2014) A new approach using EBSD to quantitatively distinguish complex transformation products along the HAZ in X80 linepipe steel. Conf Proceedings, 9th Int. Pipeline Conf, Calgary, AB, Canada. doi:10.1115/IPC2014-33668

  40. Gharibshahiyan E, Honarbakhsh A, Parvin N, Rahimian M (2011) The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Mater Des 32:2042–2048. doi:10.1016/j.matdes.2010.11.056

    Article  Google Scholar 

  41. Yang HS, Bhadeshia HKDH (2009) Austenite grain size and the martensite-start temperature. Scr Mater 60:493–495. doi:10.1016/j.scriptamat.2008.11.043

    Article  Google Scholar 

  42. Garcia-Junceda A, Capdevila C, Caballero FG et al (2008) Dependence of martensite start temperature on fine austenite grain size. Scr Mater 58:134–137. doi:10.1016/j.scriptamat.2007.09.017

    Article  Google Scholar 

  43. Lee S-J, Lee Y-K (2005) Effect of austenite grain size on martensitic transformation of a low alloy steel. Mater Sci Forum 475–479:3169–3172

    Article  Google Scholar 

  44. Bhadeshia HKDH (2013) About calculating the characteristics of the martensite-austenite constituent. In: Int. Semin. Weld. High Strength Pipeline Steels. The Minerals, Metals and Materials Society, The Minerals, Metals and Materials Society (TMS), USA, pp 99–106

  45. Yan P, Bhadeshia HKDH (2015) The austenite-ferrite transformation in enhanced-niobium, low-carbon steel. Mater Sci Technol 31:1066–1076. doi:10.1179/1743284714Y.0000000673

    Article  Google Scholar 

  46. Matsuda F, Ikeuchi K, Fukada Y et al (1995) Review of mechanical and metallurgical investigations of M-A constituents in welded joint in Japan.Pdf. Transcations JWRI 24:1–24

    Google Scholar 

  47. Kim BC, Lee S, Kim NJ, Lee DY (1991) Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds. Metall Mater Trans A 22:139–149

    Article  Google Scholar 

  48. Shome M (2007) Effect of heat-input on austenite grain size in the heat-affected zone of HSLA-100 steel. Mater Sci Eng A 445–446:454–460. doi:10.1016/j.msea.2006.09.085

    Article  Google Scholar 

  49. Somekawa H, Mukai T (2006) Fracture toughness in an extruded ZK60 magnesium alloy. Mater Trans 47:995–998

    Article  Google Scholar 

  50. Lan L, Qiu C, Zhao D (2012) Analysis of martensite – austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J Mater Sci 47:4732–4742. doi:10.1007/s10853-012-6346-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadijoo, M., Collins, L., Henein, H. et al. Evaluation of cold wire addition effect on heat input and productivity of tandem submerged arc welding for low-carbon microalloyed steels. Int J Adv Manuf Technol 92, 817–829 (2017). https://doi.org/10.1007/s00170-017-0150-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0150-3

Keywords

Navigation