Skip to main content
Log in

Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-strength low-carbon microalloyed steels may be adversely affected by the high-heat input and thermal cycle that they experience during tandem submerged arc welding. The heat-affected zone (HAZ), particularly the coarse-grained heat-affected zone (CGHAZ), i.e., the region adjacent to the fusion line, has been known to show lower fracture toughness compared with the rest of the steel. The deterioration in toughness of the CGHAZ is attributed to the formation of martensite-austenite (M-A) constituents, local brittle zones, and large prior austenite grains (PAG). In the present work, the influence of the addition of a cold wire at various wire feed rates in cold-wire tandem submerged arc welding, a recently developed welding process for pipeline manufacturing, on the microstructure and mechanical properties of the HAZ of a microalloyed steel has been studied. The cold wire moderates the heat input of welding by consuming the heat of the trail electrode. Macrostructural analysis showed a decrease in the CGHAZ size by addition of a cold wire. Microstructural evaluation, using both tint etching optical microscopy and scanning electron microscopy, indicated the formation of finer PAGs and less fraction of M-A constituents with refined morphology within the CGHAZ when the cold wire was fed at 25.4 cm/min. This resulted in an improvement in the HAZ impact fracture toughness. These improvements are attributed to lower actual heat introduced to the weldment and lower peak temperature in the CGHAZ by cold-wire addition. However, a faster feed rate of the cold wire at 76.2 cm/min adversely affected the toughness due to the formation of slender M-A constituents caused by the relatively faster cooling rate in the CGHAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, J. Mater. Process. Technol. 211, 368–75 (2011)

    Article  Google Scholar 

  2. D.V. Kiran, S.A. Alam, A. De, J. Mater. Eng. Perform. 22, 988–94 (2013)

    Article  Google Scholar 

  3. ESAB: Submerged Arc Welding (Technical Handbook), TX, 2013.

  4. D.M. Viano, N.U. Ahmed, G.O. Schumann, D.M. Viano, N.U. Ahmed, G.O. Schumann, Sci. Technol. Weld. Join. 5, 26–34 (2000)

    Article  Google Scholar 

  5. Y. Watanabe, K. Yoshii, and Y. Yoshida: Development of 590N/mm2 Steel with Good Weldability for Building Structures, Technichal Report No. 90, 2004.

  6. D.W. Nugent, R.M., Dybas, R.J., Hunt, J.F., Meyer: Submerged Arc Welding. AWS Welding Handbook, 8th Ed., American Welding Society, Miami, 2009.

  7. S. Shen, I.N.A. Oguocha, S. Yannacopoulos, J. Mater. Process. Technol. 212, 286–94 (2012)

    Article  Google Scholar 

  8. Y.Q. Zhang, H.Q. Zhang, J.F. Li, and W.M. Liu: J. Iron Steel Res. Int., 2009, vol. 16, pp. 73–80.

  9. Z.H. Xia, X.L. Wan, X.L. Tao, K.M. Wu, Adv. Mater. Res. 538–541, 2003–2008 (2012)

    Article  Google Scholar 

  10. L. Yu, H.H. Wang, T.P. Hou, X.L. Wang, X.L. Wan, K.M. Wu, Sci. Technol. Weld. Join. 19, 708–14 (2014)

    Article  Google Scholar 

  11. X. Li, X. Ma, S.V. Subramanian, Ch. Shang, R.D.K. Misra, Mater. Sci. Eng. A 616, 141–47 (2014)

    Article  Google Scholar 

  12. X. Li, Y. Fan, X. Ma, S.V. Subramanian, Ch. Shang, Mater. Des. 67, 457–63 (2015)

    Article  Google Scholar 

  13. C.L. Davis, J.E. King, Mater. Sci. Technol. 9, 8–15 (1993)

    Article  Google Scholar 

  14. C.L. Davis, J.E. King, Metall. Mater. Trans. A 25, 563–73 (1994)

    Article  Google Scholar 

  15. J.M. Reichert, T. Garcin, M. Militzer, and W.J. Poole: in 9th Int. Pipeline Conf., American Society of Mechanical Engineering, Calgary, AB, 2014.

  16. S. Moeinifar, A.H. Kokabi, H.R.M. Hosseini, Mater. Des. 31, 2948–55 (2010)

    Article  Google Scholar 

  17. E. Gharibshahiyan, A. Honarbakhsh, N. Parvin, M. Rahimian, Mater. Des. 32, 2042–48 (2011)

    Article  Google Scholar 

  18. H.S. Yang, H.K.D.H. Bhadeshia, Scr. Mater. 60, 493–95 (2009)

    Article  Google Scholar 

  19. A. Garcia-Junceda, C. Capdevila, F.G. Caballero, C. Garcia, D. Andre, Scr. Mater. 58, 134–37 (2008)

    Article  Google Scholar 

  20. M.F. Mruczek, P.J. Konkol, Cold Wire Feed Submerged Arc Welding: Technical Report (Advanced Technology Institute (ATI), Johnstown, PA, 2006)

    Google Scholar 

  21. M. Ramakrishnan and V. Muthupandi: Int. J. Adv. Manuf. Technol., 65, pp. 945–956 (2013)

    Article  Google Scholar 

  22. M. Ramakrishnan, K. Padmanaban, V. Muthupandi, Int. J. Adv. Manuf. Technol. 68, 293–316 (2013)

    Article  Google Scholar 

  23. M. Mohammadijoo, S. Kenny, J.B. Wiskel, D.G. Ivey, and H. Henein: in 54th Anuual Conf. Metall., Canadian Institute of Mining, Metallurgy and Petroleum, Toronto, ON, 2015, pp. 1–13.

  24. M. Mohammadijoo, S. Kenny, L. Collins, H. Henein, and D.G. Ivey: Int. J. Adv. Manuf. Technol., 88, pp. 2249–2263 (2017)

    Article  Google Scholar 

  25. N. Shikanai, S. Mitao, and S. Endo: Recent Development in Microstructural Control Technologies through the Thermo-Mechanical Control Process (TMCP) with JFE Steel’s High-Performance: JFE Technical Report No. 18 Plates, JFE Steel, Tokyo, 2007.

  26. K.E. Easterling, Introduction to the Physical Metallurgy of Welding (Butterworth-Heinemann Ltd, Oxford, 1992)

    Google Scholar 

  27. B. De Meester, ISIJ Int. 37, 537–51 (1997)

    Article  Google Scholar 

  28. L.P. Connor, R.L. O’Brien, Welding Handbook: Welding Technology (American Welding Society, Miami, 1987)

    Book  Google Scholar 

  29. ASTM: ASTM E23-12C: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, PA, 2012.

  30. ASTM: E384: Standard Test Method for Knoop and Vickers Hardness of Materials, ASTM International, PA, 2012.

  31. ASTM: E3-11: Standard Guide for Preparation of Metallographic Specimens, ASTM International, PA, 2011.

  32. Y. Prawoto, N. Jasmawati, K. Sumeru, J. Mater. Sci. Technol. 28, 461–66 (2012)

    Article  Google Scholar 

  33. ASTM: E112-12: Standard Test Methods for Determining Average Grain Size, ASTM International, PA, 2012.

  34. F.S. LePera, Metallography 12, 263–68 (1979)

    Article  Google Scholar 

  35. M. Mohammadijoo, H. Henein, and D.G. Ivey: in Microsc. Soc. Canada 43rd Annu. Meet., Edmonton, AB, 2016, pp. 68–69.

  36. ASTM: ASTM E562-11: Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count, ASTM International, PA, 2011.

  37. S.M. Graham: J. Test. Eval., vol. 33 pp. 32-38 (2005).

    Article  Google Scholar 

  38. H.K.D.H. Bhadeshia: in Int. Semin. Weld. High Strength Pipeline Steels, CBMM and The Minerals, Metals and Materials Society, The Minerals, Metals and Materials Society (TMS), USA, 2013, pp. 99–106.

  39. H.K.D.H. Bhadeshia, Mater. Sci. Forum 783–786, 2129–35 (2014)

    Article  Google Scholar 

  40. M. Shome, O.P. Gupta, O.N. Mohanty, Metall. Mater. Trans. A 35A, 985–96 (2004)

    Article  Google Scholar 

  41. G. Spanos, R.W. Fonda, R.A. Vandermeer, A. Matuszeski, Metall. Mater. Trans. A 26A, 3277–93 (1995)

    Article  Google Scholar 

  42. M. Shome, Mater. Sci. Eng. A 445–446, 454–60 (2007)

    Article  Google Scholar 

  43. R. Cao, J. Li, D.S. Liu, J.Y. Ma, J.H. Chen, Metall. Mater. Trans. A 46A, 2999–3014 (2015)

    Article  Google Scholar 

  44. P. Yan, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 31, 1066–76 (2015)

    Article  Google Scholar 

  45. F. Matsuda, K. Ikeuchi, Y. Fukada, Y. Horii, H. Okada, T. Shiwaku, C. Shiga, S. Suzuki, Transcations JWRI 24, 1–24 (1995)

    Google Scholar 

  46. B.C. Kim, S. Lee, N.J. Kim, D.Y. Lee, Metall. Mater. Trans. A 22, 139–49 (1991)

    Article  Google Scholar 

  47. L. Lan, Ch. Qiu, D. Zhao, J. Mater. Sci. 47, 4732–42 (2012)

    Article  Google Scholar 

  48. H. Somekawa, T. Mukai, Mater. Trans. 47, 995–98 (2006)

    Article  Google Scholar 

  49. C. Heinze, A. Pittner, M. Rethmeier, S.S. Babu, Comput. Mater. Sci. 69, 251–60 (2013)

    Article  Google Scholar 

  50. J.R.C. Guimaraes, P.R. Rios, J. Mater. Sci. 45, 1074–77 (2010)

    Article  Google Scholar 

  51. D.P. Koistinen, R.E. Marburger, Acta Metall. 7, 59–60 (1959)

    Article  Google Scholar 

  52. J.C. Fisher, J.H. Hollomon, D. Turnbull, Trans. Am. Inst. Min. Metall. Eng. 185, 691–700 (1949)

    Google Scholar 

  53. C.R. Brooks, Principles of the Heat Treatment of Plain Carbon and Low-Alloy Steel (ASM International, Ohio, 1996)

    Google Scholar 

  54. G.-L. Liang, S.-W. Yang, H.-B. Wu, Rare Met. 32, 129–33 (2013)

    Article  Google Scholar 

  55. B. Hutchinson, J. Komenda, G.S. Rohrer, H. Beladi, Acta Mater. 97, 380–91 (2015)

    Article  Google Scholar 

  56. Y. Li, T.N. Baker, Mater. Sci. Technol. 26, 1029–40 (2010)

    Article  Google Scholar 

  57. L. Aucott, S.W. Wen, H. Dong, Mater. Sci. Eng. A 622, 194–203 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada, Evraz Inc. NA, TransCanada PipeLines Ltd., Enbridge Pipelines Inc., UT quality Inc. and Alliance Pipeline Ltd for financial support. Special thanks go to the Research and Development Division of Evraz Inc. NA for providing equipment and technical assistance to conduct the welding runs and Charpy testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Additional information

Manuscript submitted August 8, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadijoo, M., Kenny, S., Collins, L. et al. Characterization of HAZ of API X70 Microalloyed Steel Welded by Cold-Wire Tandem Submerged Arc Welding. Metall Mater Trans A 48, 2247–2259 (2017). https://doi.org/10.1007/s11661-017-4041-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4041-x

Keywords

Navigation