Skip to main content
Log in

Influence of cold-wire tandem submerged arc welding parameters on weld geometry and microhardness of microalloyed pipeline steels

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Tandem submerged arc welding with an additional cold-wire (CWTSAW) is being developed for pipeline manufacturing to improve productivity in terms of deposition rate and travel speed of welding. An appropriate understanding of the welding conditions to guarantee requisite weld geometry, appearance, and mechanical properties is always essential in the development of a welding process. Currently, the effect of the cold-wire addition parameters on dilution and the geometry and properties of the weld metal (WM) and the heat-affected zone (HAZ) is not well understood. In this work, heat input, voltage, and travel speed of both electrodes along with three main cold-wire parameters are investigated and correlated with the geometry of the weld and HAZ, i.e., aspect ratio (AR), semi-penetration ratio (SPR), reinforcement area (RA), and coarse-grained heat-affected zone (CGHAZ) area, dilution, and the microhardness of the WM and CGHAZ. The results showed that varying the cold-wire parameters significantly affects the dilution, AR, SPR, and microhardness. The addition of a cold-wire at a lagging position with a feed speed of 8.5 mm/s at 63° resulted in an overall improvement in the weld geometry, dilution, and microhardness. Cold-wire addition led to a reduction in the CGHAZ area, the amount of dilution, and the microhardness of the CGHAZ. Microstructural analysis, using both optical microscopy and scanning electron microscopy (SEM), indicated the formation of finer prior austenite grains (PAGs) and less martensite-austenite (M-A) constituent within the CGHAZ of the CWTSAW samples. The appropriate process parameters are defined to control the weld and HAZ geometry, dilution, and mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Qiao GY, Xiao FR, Zhang XB et al (2009) Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels. Trans Nonferrous Met Soc China (English Ed 19:1395–1399. doi:10.1016/S1003-6326(09)60039-X

    Article  Google Scholar 

  2. Nugent, RM, Dybas, RJ, Hunt, JF, Meyer D (2009) Submerged arc welding. AWS Welding Handbook, 8th ed. Am. Weld. Soc., Miami

  3. ESAB (2013) Submerged arc welding (Technical Handbook) 1–94

  4. Kiran DV, Alam SA, De A (2013) Development of process maps in two-wire tandem submerged arc welding process of HSLA steel. J Mater Eng Perform 22:988–994. doi:10.1007/s11665-012-0381-2

    Article  Google Scholar 

  5. Moeinifar S, Kokabi AH, Hosseini HRM (2011) Role of tandem submerged arc welding thermal cycles on properties of the heat affected zone in X80 microalloyed pipe line steel. J Mater Process Technol 211:368–375. doi:10.1016/j.jmatprotec.2010.10.011

    Article  Google Scholar 

  6. Beidokhti B, Kokabi AH, Dolati A (2014) A comprehensive study on the microstructure of high strength low alloy pipeline welds. J Alloys Compd 597:142–147. doi:10.1016/j.jallcom.2014.01.212

    Article  Google Scholar 

  7. Farhat H (2007) Effects of multiple wires and welding speed on the microstructures and properties of submerged arc welded X80 steel. University of Saskatchewan, PhD Dissertation

    Google Scholar 

  8. Murugan N, Gunaraj V (2005) Prediction and control of weld bead geometry and shape relationships in submerged arc welding of pipes. J Mater Process Technol 168:478–487. doi:10.1016/j.jmatprotec.2005.03.001

    Article  Google Scholar 

  9. Mruczek MF, Konkol PJ (2005) Twin-arc and cold-wire-feed submerged-arc welding of HSLA-100 steel. Conf. Proceedings, Am. Weld. Soc

  10. Ramakrishnan M, Muthupandi V (2012) Application of submerged arc welding technology with cold wire addition for drum shell long seam butt welds of pressure vessel components. Int J Adv Manuf Technol 1–12. doi: 10.1007/s00170-012-4230-0

  11. Ramakrishnan M, Padmanaban K, Muthupandi V (2013) Studies on fracture toughness of cold wire addition in narrow groove submerged arc welding process. Int J Adv Manuf Technol 68:293–316. doi:10.1007/s00170-013-4729-z

    Article  Google Scholar 

  12. Akkas N, Karayel D, Ozkan SS et al (2013) Modeling and analysis of the weld bead geometry in submerged arc welding by using adaptive neurofuzzy inference system. Math Probl Eng. doi:10.1155/2013/473495

    Google Scholar 

  13. Benyounis KY, Olabi AG (2008) Optimization of different welding processes using statistical and numerical approaches—a reference guide. Adv Eng Softw 39:483–496. doi:10.1016/j.advengsoft.2007.03.012

    Article  Google Scholar 

  14. Tarng YS, Yang WH (1998) Application of the Taguchi method to the optimization of the submerged arc welding process. Mater Manuf Process 13:455–467. doi:10.1080/10426919808935262

    Article  Google Scholar 

  15. Shen S, Oguocha INA, Yannacopoulos S (2012) Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints. J Mater Process Technol 212:286–294. doi:10.1016/j.jmatprotec.2011.09.013

    Article  Google Scholar 

  16. Connor LP, O’Brien RL (1987) Welding Handbook: Welding Technology. Am. Weld, Soc

    Book  Google Scholar 

  17. Taguchi G, Rafanelli AJ (1994) Taguchi on robust technology development: bringing quality engineering upstream. J Electron Packag 116:161. doi:10.1115/1.2905506

    Article  Google Scholar 

  18. ASTM (2011) E3-11 Standard guide for preparation of metallographic specimens 1. ASTM Copyright i:1–12. doi: 10.1520/E0003-11.2

  19. Pepin J, Penniston C, Henein H et al (2012) Using semipenetration ratio to characterise effects of waveform variables on bead profile and heat affected zone with single electrode submerged arc welding. Can Metall Q 51:284–293. doi:10.1179/1879139512Y.0000000018

    Article  Google Scholar 

  20. Fisher RA (1956) Statistical methods for research workers. Q J R Meteorol Soc 82:119–119. doi:10.1002/qj.49708235130

    Google Scholar 

  21. Montgomery DC (2009) Design and analysis of experiments, 7th edn. Wiley, New York

    Google Scholar 

  22. Dhas JER, Kumanan S (2011) Optimization of parameters of submerged arc weld using non conventional techniques. Appl Soft Comput J 11:5198–5204. doi:10.1016/j.asoc.2011.05.041

    Article  Google Scholar 

  23. Tarng YSS, Juang SCC, Chang CHH (2002) The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing. J Mater Process Technol 128:1–6. doi:10.1016/S0924-0136(01)01261-4

    Article  Google Scholar 

  24. Roy R (1990) A primer on the Taguchi method. Van Norstrand Reinhold, New York

    MATH  Google Scholar 

  25. Yang LJ, Chandel RS, Bibby MJ (1993) An analysis of curvilinear regression equations for modeling the submerged-arc welding process. J Mater Process Tech 37:601–611. doi:10.1016/0924-0136(93)90121-L

    Article  Google Scholar 

  26. Yang LJ, Chandel RS, Bibby MJ (1992) The effects of process variables on the bead width of submerged-arc weld deposits. J Mater Process Tech 29:133–144. doi:10.1016/0924-0136(92)90430-Z

    Article  Google Scholar 

  27. Kou S (2003) Welding metallurgy, 2nd edn. Wiley, New York. doi: 10.1016/j.theochem.2007.07.017

  28. Fisher SRA (1971) The design of experiments. Hafner Publ Co, New York 1–27

  29. Arnold SF (2006) Design of experiments with MINITAB. Am Stat. doi:10.1198/tas.2006.s46

    Google Scholar 

  30. ASTM (2012) E384-11: Standard test method for Knoop and Vickers hardness of materials. ASTM Stand 1–43. doi: 10.1520/E0384-11E01.2

  31. LePera FS (1979) Improved etching technique for the determination of percent martensite in high-strength dual-phase steels. Metallography 12:263–268. doi:10.1016/0026-0800(79)90041-7

    Article  Google Scholar 

  32. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60. doi:10.1016/0001-6160(59)90170-1

    Article  Google Scholar 

  33. Li X, Ma X, Subramanian SV et al (2014) Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel. Mater Sci Eng A 616:141–147. doi:10.1016/j.msea.2014.07.100

    Article  Google Scholar 

  34. Yang HS, Bhadeshia HKDH (2009) Austenite grain size and the martensite-start temperature. Scr Mater 60:493–495. doi:10.1016/j.scriptamat.2008.11.043

    Article  Google Scholar 

  35. Yu L, Wang HH, Hou TP et al (2014) Characteristic of martensite–austenite constituents in coarse grained heat affected zone of HSLA steel with varying Al contents. Sci Technol Weld Join 19:708–714. doi:10.1179/1362171814Y.0000000246

    Article  Google Scholar 

  36. Heinze C, Pittner A, Rethmeier M, Babu SS (2013) Dependency of martensite start temperature on prior austenite grain size and its influence on welding-induced residual stresses. Comput Mater Sci 69:251–260. doi:10.1016/j.commatsci.2012.11.058

    Article  Google Scholar 

  37. Prawoto Y, Jasmawati N, Sumeru K (2012) Effect of prior austenite grain size on the morphology and mechanical properties of martensite in medium carbon steel. J Mater Sci Technol 28:461–466. doi:10.1016/S1005-0302(12)60083-8

    Article  Google Scholar 

  38. Bhadeshia HKDH (2013) About calculating the characteristics of the martensite-austenite constituent. Proc Int Semin Weld High Strength Pipeline Steels, CBMM TMS 99–106

  39. Fisher JC, Hollomon JH, Turnbull D (1949) Kinetics of the austenite-martensite transformation. Trans Am Inst Min Metall Eng 185:691–700

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Ivey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadijoo, M., Kenny, S., Collins, L. et al. Influence of cold-wire tandem submerged arc welding parameters on weld geometry and microhardness of microalloyed pipeline steels. Int J Adv Manuf Technol 88, 2249–2263 (2017). https://doi.org/10.1007/s00170-016-8910-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8910-z

Keywords

Navigation