Multi-directional incremental sheet forming—a novel methodology for flexibly producing thin-walled parts

  • Tong Wen
  • Xia Chen
  • Jie Zheng
  • Jian Qing
  • Ze-xu Tang


How to perform sheet metal forming in a rapid and cost-efficient way, especially for the small-batch productions, has been a challenge to the manufacturing industry for a long time. Incremental sheet forming (ISF) has vast potentials in rapid and economical production of small-batch thin-walled parts, but so far, the technology is mainly applied in a limited forming range of planar sheets, most with a deformation mode of bi-axial stretching. To establish a more complete forming chain based on ISF and then take full advantage of it, this paper proposed a new methodology called “Multi-directional Incremental Sheet Forming (MISF),” particularly aiming to accomplish the non bi-axial stretching formation of thin-walled structures such as flanging, curling, and localized forming of planar sheets and hollow profiles. The method can not only extend the application of conventional ISF, but also can fabricate some special-shaped shell components which are hard to integrally form by any other ways. Thus, it can provide a strong support to realize the lightweight of structures. The progress review of MISF was presented, and the mechanical features during forming, including the complex coupled elastic-plastic deformation, buckling and post-buckling, the combination of constrained and free deformations, etc., were summarized. Moreover, key items of defect control were addressed.


Sheet metal forming Multi-directional incremental sheet forming Deformation Defect control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakagawa T (2000) Advances in prototype and low volume sheet forming and tooling. J Mater Process Tech 98:244–250CrossRefGoogle Scholar
  2. 2.
    Jeswiet J, Geiger M, Engel U, Kleiner M, Schikorra M, Duflou J, Neugebauer R (2008) Metal forming progress since 2000. CIRP J Manu Sci Technol 1:2–17CrossRefGoogle Scholar
  3. 3.
    Du ZH, Chua CK, Chua YS, Loh-Lee KG, Lim ST (2002) Rapid sheet metal manufacturing. Part 1: Indirect rapid tooling. Int J Adv Manuf Technol 19:411–417CrossRefGoogle Scholar
  4. 4.
    Cheah CM, Chua CK, Lee CW, Lim ST, Eu KH, Lin LT (2002) Rapid sheet metal manufacturing. Part 2: Direct rapid tooling. Int J Adv Manuf Technol 19:510–515CrossRefGoogle Scholar
  5. 5.
    Powell NN, Andrew C (1992) Incremental forming of flanged sheet metal components without dedicated dies. In Proc of the Institution of Mechanical Engineers (IMECHE) part B. J Eng Manuf 206:41–47CrossRefGoogle Scholar
  6. 6.
    Yarlagadda PKDV, Ilyas IP, Christodoulou P (2001) Development of rapid tooling for sheet metal drawing using nickel electroforming and stereolithography processes. J Mater Process Tech 111:286–294CrossRefGoogle Scholar
  7. 7.
    Müller H, Sladojevic J (2001) Rapid tooling approaches for small lot production of sheet-metal parts. J Mater Process Tech 115:97–103CrossRefGoogle Scholar
  8. 8.
    Levy GN, Schindel R, Kruth JP (2003) Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives. CIRP Ann Manuf Technol 52:589–609CrossRefGoogle Scholar
  9. 9.
    Zhang H, Wang G, Luo Y, Nakaga T (2001) Rapid hard tooling by plasma spraying for injection molding and sheet metal forming. Thin Solid Films 390:7–12CrossRefGoogle Scholar
  10. 10.
    Walczyk DF, Hardt DE (1998) Rapid tooling for sheet metal forming using profiled edge laminations-design principles and demonstration. J Manuf Sci Eng 120:746–754CrossRefGoogle Scholar
  11. 11.
    Walczyk DF, Hardt DE (1999) A comparison of rapid fabrication methods for sheet metal forming dies. J Manuf Sci Eng 121:214–224CrossRefGoogle Scholar
  12. 12.
    Im YT, Walczyk DF (2002) Development of a computer-aided manufacturing system for profiled edge lamination tooling. J Manuf Sci Eng 124:754–761CrossRefGoogle Scholar
  13. 13.
    Wang ZJ, Wang PY, Song H (2014) Research on sheet-metal flexible-die forming using a magnetorheological fluid. J Mater Process Tech 214:2200–2211CrossRefGoogle Scholar
  14. 14.
    Li MZ, Cai ZY, Sui Z, Yan QG (2002) Multi-point forming technology for sheet metal. J Mater Process Tech 129:333–338CrossRefGoogle Scholar
  15. 15.
    Cai ZY, Li MZ (2002) Multi-point forming of three-dimensional sheet metal and the control of the forming process. Int J Press Vessel Pip 79:289–296CrossRefGoogle Scholar
  16. 16.
    Wang ZJ, Liu JG, Wang XY, Hu ZY, Guo B (2004) Viscous pressure forming (VPF): state-of-the-art and future trends. J Mater Process Tech 151:80–87CrossRefGoogle Scholar
  17. 17.
    Gutscher G, Wu HC, Ngaile G, Altan T (2004) Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test. J Mater Process Tech 146:1–7CrossRefGoogle Scholar
  18. 18.
    Liu J, Ahmetoglu M, Altan T (2000) Evaluation of sheet metal formability, viscous pressure forming (VPF) dome test. J Mater Process Tech 98:1–6CrossRefGoogle Scholar
  19. 19.
    Shulkin LB, Posteraro RA, Ahmetoglu MA, Kinzel GL, Altan T (2000) Blank holder force (BHF) control in viscous pressure forming (VPF) of sheet metal. J Mater Process Tech 98:7–16CrossRefGoogle Scholar
  20. 20.
    Liu JH, Westhoff B, Ahmetoglu MA, Altan T (1996) Application of viscous pressure forming (VPF) to low volume stamping of difficult-to-form alloys - results of preliminary FEM simulations. J Mater Process Tech 59:49–58CrossRefGoogle Scholar
  21. 21.
    Ahn DG (2011) Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools—state of the art. Int J Precis Eng Manuf 12:925–938CrossRefGoogle Scholar
  22. 22.
    Walczyk DF, Vittal S (2000) Bending of titanium sheet using laser forming. J Manuf Process 2:258–269CrossRefGoogle Scholar
  23. 23.
    Kim J, Na SJ (2003) Development of irradiation strategies for free curve laser forming. Opt Laser Technol 35:605–611CrossRefGoogle Scholar
  24. 24.
    Edwardson SP, Griffiths J, Edwards KR, Dearden G, Watkins KG (2010) Laser forming: overview of the controlling factors in the temperature gradient mechanism. Proc IMechE Part C: J Mech Eng Sci 224:1031–1040CrossRefGoogle Scholar
  25. 25.
    Mousavi SAAA, Riahi M, Parast AH (2007) Experimental and numerical analyses of explosive free forming. J Mater Process Tech 187–188:512–516CrossRefGoogle Scholar
  26. 26.
    He FM, Tong Z, Wang N, Hu ZY (2000) Explosive forming of thin-wall semi-spherical parts. Mater Lett 2:133–137Google Scholar
  27. 27.
    Mynors DJ, Zhang B (2002) Applications and capabilities of explosive forming. J Mater Process Tech 125–126:1–25CrossRefGoogle Scholar
  28. 28.
    Zhang R, Iyama H, Fujita M, Zhang TS (1999) Optimum structure design method for non-die explosive forming of spherical vessel technology. J Mater Process Tech 1–3:217–219CrossRefGoogle Scholar
  29. 29.
    Nariman-Zadeh N, Darvizeh A, Jamali A, Moeini A (2005) Evolutionary design of generalized polynomial neural networks for modelling and prediction of explosive forming process. J Mater Process Tech 164–165:1561–1571CrossRefGoogle Scholar
  30. 30.
    Emmens WC, Sebastiani G, Boogaard AH (2010) The technology of incremental sheet forming—a brief review of the history. J Mater Process Tech 210:981–997CrossRefGoogle Scholar
  31. 31.
    Grosman F, Madej L, Zioikiewicz S, Nowak J (2012) Experimental and numerical investigation on development of new incremental forming process. J Mater Process Tech 212:2200–2209CrossRefGoogle Scholar
  32. 32.
    Liu ZB, Daniel WJT, Li YL, Liu SS, Meehan PA (2014) Multi-pass deformation design for incremental sheet forming: analytical modeling, finite element analysis and experimental validation. J Mater Process Tech 214:620–634CrossRefGoogle Scholar
  33. 33.
    Takano H, Kitazawa K, Goto T (2008) Incremental forming of nonuniform sheet metal: possibility of cold recycling process of sheet metal waste. Int J Mach Tool Manuf 48:477–482CrossRefGoogle Scholar
  34. 34.
    Kim TJ, Yang DY (2000) Improvement of formability for the incremental sheet metal forming process. Int J Mech Sci 42:1271–1286CrossRefMATHGoogle Scholar
  35. 35.
    Kim YH, Park JJ (2002) Effect of process parameters on formability in incremental forming of sheet metal. J Mater Process Tech 130–131:42–46CrossRefGoogle Scholar
  36. 36.
    Hussain G, Gao L, Dar NU (2007) An experimental study on some formability evaluation methods in negative incremental forming. J Mater Process Tech 186:45–53CrossRefGoogle Scholar
  37. 37.
    Emmens WC, Van den Boogaard AH (2009) An overview of stabilizing deformation mechanisms in incremental sheet forming. J Mater Process Tech 209:3688–3695CrossRefGoogle Scholar
  38. 38.
    Jackson K, Allwood J (2009) The mechanics of incremental sheet forming. J Mater Process Tech 209:1158–1174CrossRefGoogle Scholar
  39. 39.
    Cui Z, Gao L (2010) Studies on hole-flanging process using multistage incremental forming. CIRP J Manuf Sci Technol 2:124–128CrossRefGoogle Scholar
  40. 40.
    Centeno G, Silva MB, Cristino VAM, Vallellano C, Martins PAF (2012) Hole-flanging by incremental sheet forming. Int J Mach Tool Manufact 59:46–54CrossRefGoogle Scholar
  41. 41.
    Silva MB, Teixeira P, Reis A, Martins PAF (2013) On the formability of hole-flanging by incremental sheet forming. J Mater Des Appl 227:91–99Google Scholar
  42. 42.
    Cristino VA, Montanari L, Silva MB, Atkins AG, Martins PAF (2014) Fracture in hole-flanging produced by single point incremental forming. Int J Mech Sci 83:146–154CrossRefGoogle Scholar
  43. 43.
    Cristino VA, Montanari L, Silva MB, Martins PAF (2014) Towards square hole-flanging produced by single point incremental forming. Proc IMechE Part L: J Mater Des Appl 2:1–9Google Scholar
  44. 44.
    Bambach M, Voswinckel H, Hirt G (2014) A new process design for performing hole-flanging operations by incremental sheet forming. Procedia Eng 81:2305–2310CrossRefGoogle Scholar
  45. 45.
    Petek A, Kuzman K (2012) Backward hole-flanging technology using an incremental approach. J Mech Eng 58:73–80CrossRefGoogle Scholar
  46. 46.
    Voswinckel H, Bambach M, Hirt G (2013) Process limits of stretch and shrink flanging by incremental sheet metal forming. Key Eng Mater 549:45–52CrossRefGoogle Scholar
  47. 47.
    Matsubara S (1994) Incremental nosing of a circular tube with a hemispherical head tool. J JSTP 35:256–261Google Scholar
  48. 48.
    Teramae T, Manabe K, Ueno K, Nakamura K, Takeda H (2007) Effect of material properties on deformation behavior in incremental tube-burring process using a bar tool. J Mater Process Tech 191:24–29CrossRefGoogle Scholar
  49. 49.
    Yang C, Wen T, Liu LT, Zhang S, Wang H (2014) Dieless incremental hole-flanging of thin-walled tube for producing branched tubing. J Mater Process Tech 214:2461–2467CrossRefGoogle Scholar
  50. 50.
    Wen T, Yang C, Zhang S, Liu LT (2015) Characterization of deformation behavior of thin-walled tubes during incremental forming: a study with selected examples. Int J Adv Manuf Technol 78:1769–1780CrossRefGoogle Scholar
  51. 51.
    Wen T, Zhang S, Zheng J, Huang Q, Liu Q (2016) Bi-directional dieless incremental flanging of sheet metals using bar tool with tapered shoulders. J Mater Process Tech 229:795–803CrossRefGoogle Scholar
  52. 52.
    Meier H, Smukala V, Dewald O, Zhang J (2007) Two point incremental forming with two moving forming tools. Key Eng Mater 344:599–605CrossRefGoogle Scholar
  53. 53.
    Meier H, Buff B, Laurischkat R, Smukala V (2009) Increasing the part accuracy in dieless robot-based incremental sheet metal forming. CIRP Ann Manuf Technol 58:233–238CrossRefGoogle Scholar
  54. 54.
    Buff B, Magnus C, Zhu JH, Meier H (2013) Robot-based incremental sheet metal forming—increasing the geometrical complexity and accuracy. Key Eng Mater 549:149–155CrossRefGoogle Scholar
  55. 55.
    Duflou JR, Clarke R, Merklein M, Micari F, Shirvani B, Kellens K (2011) Robot-based incremental sheet metal forming—increasing the geometrical accuracy of complex parts. Key Eng Mater 473:853–860CrossRefGoogle Scholar
  56. 56.
    Schafer T, Schraft RD (2005) Incremental sheet metal forming by industrial robots. Rapid Prototyp J 11:278–286CrossRefGoogle Scholar
  57. 57.
    Belchior J, Leotoing L, Guines D, Courteille E, Maurine P (2014) A process/machine coupling approach: application to robotized incremental sheet forming. J Mater Process Tech 214:1605–1616CrossRefGoogle Scholar
  58. 58.
    Thuillier S, Maout NL, Manach PY, Debois D (2008) Numerical simulation of the roll hemming process. J Mater Process Tech 198:226–233CrossRefGoogle Scholar
  59. 59.
    Hu X, Zhao YX, Huang S, Li SH, Lin ZQ (2012) Numerical analysis of the roller hemming process. Int J Adv Manuf Technol 62:543–550CrossRefGoogle Scholar
  60. 60.
    Maoût NL, Thuillier S, Manach PY (2010) Classical and roll-hemming processes of pre-strained metallic sheets. Exp Mech 50:1087–1097CrossRefGoogle Scholar
  61. 61.
    Li YL, Liu ZB, Lu HB, Daniel WJT, Liu S, Meehan PA (2014) Efficient force prediction for incremental sheet forming and experimental validation. Int J Adv Manuf Technol 73:571–587CrossRefGoogle Scholar
  62. 62.
    Duflou J, Tunckol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Tech 189:65–72CrossRefGoogle Scholar
  63. 63.
    Bagudanch I, Centeno G, Vallellano C, Garcia-Romeu ML (2013) Forming force in Single Point Incremental Forming under different bending conditions. Procedia Eng 63:354–360CrossRefGoogle Scholar
  64. 64.
    Prabu B, Raviprakash AV, Venkatraman A (2010) Parametric study on buckling behavior of dented short carbon steel cylindrical shell subjected to uniform axial compression. Thin-Walled Struct 48:639–649CrossRefGoogle Scholar
  65. 65.
    Correia JPDM, Ferron G, Moreira LP (2003) Analytical and numerical investigation of wrinkling for deep-drawn anisotropic metal sheets. Int J Mec Sci 45:1167–1180CrossRefMATHGoogle Scholar
  66. 66.
    Wang CT, Kinzel G, Altan T (1994) Wrinkling criterion for an anisotropic shell with compound curvatures in sheet forming. Int J Mech Sci 36:945–960CrossRefMATHGoogle Scholar
  67. 67.
    Zhang GE, Yao J, Hu SJ, Wu X (2003) Shrink flanging with surface contours. J Manuf Process 5:143–153CrossRefGoogle Scholar
  68. 68.
    Allwood JM, Braun D, Music O (2010) The effect of partially cut-out blanks on geometric accuracy in incremental sheet forming. J Mater Process Tech 210:1501–1510CrossRefGoogle Scholar
  69. 69.
    Polyblank JA, Allwood JM, Duncan SR (2014) Closed-loop control of product properties in metal forming: a review and prospectus. J Mater Process Tech 214:2333–2348CrossRefGoogle Scholar
  70. 70.
    Lu B, Chen J, Ou H, Cao J (2013) Feature-based tool path generation approach for incremental sheet forming process. J Mater Process Tech 213:1221–1233CrossRefGoogle Scholar
  71. 71.
    Behera AK, Verbert J, Lauwers B, Duflou JR (2013) Tool path compensation strategies for single point incremental sheet forming using multivariate adaptive regression splines. Comput Aided Des 45:575–590CrossRefGoogle Scholar
  72. 72.
    Bahloul R, Arfa H, BelHadjSalah H (2014) A study on optimal design of process parameters in single point incremental forming of sheet metal by combining Box–Behnken design of experiments, response surface methods and genetic algorithms. Int J Adv Manuf Technol 74:163–185CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina

Personalised recommendations