Skip to main content
Log in

Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools — state of the art

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Recently, researchers related to the development of eco-friendly molding and forming tools have refocused on the laser assisted metal rapid tooling process to cope the global warming and the resource depletions. The advantageous inherent features of the laser assisted metal rapid tooling process, include an additive proves, switchable supply material and material deposition along an arbitrary trajectory, provide the tool designer and manufacturer with a chance to overcome the limitations of the conventional molding and forming tools from viewpoints of the energy consumption, the environmental impact and the material usage. This paper presents recent researches related to the application of laser assisted metal rapid tooling process to manufacture molding and forming tools. In addition, key technologies of important applications are discussed. Finally, the future issues of the laser assisted metal rapid tooling process related to the development of eco-friendly molding and forming tools are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, G. N., Schindel, R. and Kruth, J. P., “Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives,” Annals of CIRP-Manuf. Technol., Vol. 52, No. 2, pp. 589–609, 2003.

    Article  Google Scholar 

  2. Wohlers T. T., “Wohlers Report 2007: Rapid Prototyping & Manufacturing — State of the Industry Annual Worldwide Progress Report,” Wholer’s Associates, 2007.

  3. 3D Systems, http://www.3dsystems.com/products/sls/index.asp

  4. EOS GmbH, http://www.eos.info/en/home.html

  5. SLM Solutions GmbH, http://www.slm-solutions.com/

  6. Peng, L., Shengqin, J., Xiaoyan, Z., Qianwu, H. and Weihao, X., “Direct Laser Fabrication of Thin-walled Metal Parts under Open-loop Control,” Int. J. Mach. Tools Manuf., Vol. 47, No. 6, pp. 996–1002, 2007.

    Article  Google Scholar 

  7. Optomec, http://www.optomec.com//Additive-Manufacturing-Technology/Laser-Additive-Manufacturing

  8. POM Group, http://www.pomgroup.com/

  9. InssTek Inc., http://www.insstek.com/

  10. Kruth, J. P., Levy, G., Klocke, F. and Childs, T. H. C., “Consolidation Phenomena in Laser and Powder-bed Based Layered Manufacturing,” Annals of CIRP-Manuf. Technol., Vol. 56, No. 2, pp. 730–759, 2007.

    Article  Google Scholar 

  11. Morrow, M. R., Qi, H, Kim, I., Mazumder, J. and Skerlos, S. J., “Environmental Aspects of Laser-based and Conventional Tool and Die Manufacturing,” J. Clean Prod., Vol. 15, No. 10, pp. 932–943, 2005.

    Article  Google Scholar 

  12. Simchi, A., Petzoldt, F. and Pohl, H., “On the Development of Direct Metal Laser Sintering for Rapid Tooling,” J. Mater. Process, Technol., Vol. 141, No. 3, pp. 319–328, 2003.

    Article  Google Scholar 

  13. Osakada, K. and Shiomi, M., “Flexible Manufacturing of Metallic Products by Selective Laser Melting of Power,” Int. J. Mach. Tools Manuf., Vol. 46, No. 11, pp. 1188–1193, 2006.

    Article  Google Scholar 

  14. Jee, H. S. and Suh, J. H., “Laser-aided Direct Metal Deposition (DMD) Technology,” Transactions of the Society of CAD/CAM Engineers, Vol. 8, No. 3, pp. 150–156, 2003.

    Google Scholar 

  15. Chua, C. K., Teh, S. H. and Gay, R. K. L., “Rapid Prototyping Versus Virtual Prototyping in Product Design and Manufacturing,” Int. J. Adv. Manuf. Technol., Vol. 15, No. 8, pp. 597–603, 1999.

    Article  Google Scholar 

  16. Karapatis, N. P., van Griethuysen, J. P. S. and Glardon, R., “Direct Rapid Tooling: a Review of Current Research,” Rapid Prototyping J., Vol. 4, No. 2, pp. 77–89, 1998.

    Article  Google Scholar 

  17. Rosochowski, A. and Matuszak, A., “Rapid Tooling: the State of the Art,” J. Mater. Process. Technol., Vol. 106, No. 1–3, pp. 191–198, 2000.

    Article  Google Scholar 

  18. Yang, D. Y., Ahn, D. G., Lee, C. H., Park, C. H. and Kim, T. J., “Integration of CAD/CAM/CAE/RP for the Development of Metal Forming Process,” J. Mater. Process. Technol., Vol. 125–126, No. 9, pp. 26–34, 2002.

    Article  Google Scholar 

  19. Nowotny, S., Scharek, S., Beyer, E. and Richter, K. H., “Laser Beam Build-up Welding: Precision in Repair, Surface Cladding, and Direct 3D Metal Deposition,” J. Thermal Spray Technol., Vol. 16, No. 3, pp. 344–348, 2007.

    Article  Google Scholar 

  20. Shin, K. H., Natu, H., Dutta, D. and Mazumder, J., “A Method for the Design and Fabrication of Heterogeneous Objects,” Mater. Des., Vol. 24, No. 5, pp. 339–353, 2003.

    Article  Google Scholar 

  21. Jiang, W. and Molian, P., “Laser Based Flexible Fabrication of Functionally Graded Mould Inserts,” Int. J. Adv. Manuf. Technol., Vol. 19, No. 9, pp. 646–654, 2002.

    Article  Google Scholar 

  22. Smurov, I., “Laser Cladding and Laser Assisted Direct Manufacturing,” Surf. Coat. Technol., Vol. 202, No. 18, pp. 4496–4502, 2008.

    Article  Google Scholar 

  23. Ahn, D. G. and Park, S. H., “Manufacturing Technology of Injection Mold with a High Cooling Rate Using DMT Rapid Prototyping Process,” Proc. of KSPE Autumn Conference, pp. 17–18, 2006.

  24. Kar, N. J. and Calif, W., “Process for Laser Hardfacing Drill Bit Cones Having Hard Cutter Inserts,” US Patent No. 4781770, 1988.

  25. Sexton, C. L., “Application for Repair and Remanufacturing of Engineering Components Laser Cladding,” http://www.laserage.ie/files/papers/Laser%20Cladding%20of%20Engineering%20Components.pdf

  26. Mihelcic, J. R., Crittenden, J. C., Small, M. J., Shonnard, D. R., Hokanson, D. R., Zhang, Q., Chen, H., Sorby, S. A., James, V. U., Sutherland, J. W. and Schnoor, J. L., “Sustainability Science and Engineering: The Emergence of New Metadiscipline,” Environ. Sci. Technol., Vol. 37, No. 23, pp. 5314–5324, 2003.

    Article  Google Scholar 

  27. Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., Sheng, P., Sutherland, J., Thurston, D. and Wolff, E., “Environmentally Benign Manufacturing: Observations from Japan, Europe and the United States,” J. Clean Prod., Vol. 13, No. 1, pp. 1–17, 2005.

    Article  Google Scholar 

  28. Sreenivasn, R., Goel, A. and Bourell, D. L., “Sustainability Issues in Laser-based Additive Manufacturing,” Physics Procedia, Vol. 5,Part A, pp. 81–90, 2010.

    Article  Google Scholar 

  29. Chang, Y. J., “Evaluation of the Productivity and Environmental Effects of Laser Aided Direct Metal Deposition Process for Remanufacturing,” Clean Technology, Vol. 13, No. 3, pp. 228–234, 2007.

    Google Scholar 

  30. Ahn, D. G., Kim, H. W., Park, S. H. and Kim, H. S., “Manufacture of Mould with a High Energy Efficiency Using Rapid Manufacturing Process,” Proc. of the 10th International Conference on Numerical Method in Industrial Forming Process, pp. 185–191, 2010.

  31. Simchi, A., Petzoldt, F. and Pohl, H., “On the Development of Direct Metal Laser Sintering for Rapid Tooling,” J. Mater. Process. Technol., Vol. 141, No. 1–3, pp. 319–328, 2003.

    Article  Google Scholar 

  32. Shi, D. and Gibson, I., “Improving Surface Quality of Selective Laser Sintered Rapid Prototype Part Using Robotic Finishing,” Proc. IMechE Part B: J. Engng. Manuf., Vol. 214, No. 3, pp. 197–203, 2000.

    Article  Google Scholar 

  33. Jeng, J. Y. and Lin, M. C., “Mold Fabrication and Modification Using Hybrid Processes of Selective Laser Cladding and Milling,” J. Mater. Process. Technol., Vol. 110, No. 1, pp. 98–103, 2001

    Article  Google Scholar 

  34. Mognol, P., Jegou, L., Rivette, M. and Furet, B., “High Speed Milling, Electro Discharge Machining and Direct Metal Laser Sintering: A Method to Optimize These Processes in Hybrid Rapid Tooling,” Int. J. Adv. Manuf. Technol., Vol. 29, No. 1–2, pp. 35–40, 2006.

    Article  Google Scholar 

  35. Ahn, D. G., Lee, S. H., Kim, M. S., Han, G. S., Kim, J. S., Moon, H. S. and Yoon, Y. S., “Investigation into the Development of Deep Drawing Tools with Small Size for Electronic Parts Utilizing the CAE and RP/RT Technology,” Proc. of KSPE Autumn Conference, pp. 334–337, 2005.

  36. Kolleck, R., Pfanner, S. and Warnke, E. P., “Development of Cooled Tools for Press Hardening of Boron Steel Sheet,” Key Engng. Mater., Vol. 344, pp. 225–232, 2007.

    Article  Google Scholar 

  37. Nakamoto, T., Shirakawa, N., Ueda, N., Miyata Y. and Sone, T., “Plasma Nitriding to Selective Laser Sintering Parts Made of SCM430 Powder,” Surf. Coat. Technol., Vol. 202, No. 22–23, pp. 5484–5487, 2008.

    Article  Google Scholar 

  38. Griffith, M. L., Keicher, D. M., Atwood, C. L., Romero, J. A., Smugeresky, J. E., Harwell, D. L. and Greene, D. L., “Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS™),” Proc. of the Solid Freeform Fabrication Symposium, pp. 125–131, 1996.

  39. Mazumder, J., Choi, J., Nagarathnam, K., Koch, J. and Hetzner, D., “The Direct Metal Deposition of H13 Tool Steel for 3-D Components,” JOM, Vol. 49, No. 5, pp. 55–60, 1999.

    Article  Google Scholar 

  40. Abe, F., Osakada, K., Shiomi, M., Uematsu, K. and Matsumoto, M., “The Manufacturing of Hard Tools from Metallic Powders by Selective Laser Melting,” J. Mater. Process. Technol., Vol. 111, No. 1–3, pp. 210–213, 2001.

    Article  Google Scholar 

  41. Ahn, D. G. and Kim, H. W., “Study on the Manufacture of a Thermal Management Mould with Three Different Materials Using a Direct Metal Tooling Rapid Tooling Process,” Proc. IMechE Part B: J. Engng. Manuf., Vol. 224, No. 3, pp. 385–402, 2010.

    Article  Google Scholar 

  42. Mognol, L., Rivette, M., Jegou, P. and Lesprier, T., “A First Approach to Choose between HSM, EDM, and DMLS Processes in Hybrid Rapid Tooling,” Rapid Prototyping J., Vol. 13, No. 1, pp. 7–16, 2007.

    Article  Google Scholar 

  43. Subburaj, K. and Ravi, B., “Computer Aided Rapid Tooling Process Selection and Manufacturability Evaluation for Injection Mold Development,” Comput. Ind., Vol. 59, No. 2–3, pp. 262–276, 2008.

    Google Scholar 

  44. Mohammed, J., “Manufacturing Die Casting Molds via Direct Metal Deposition (DMD),” SME Technical Paper, TP07PUB70, pp. 1–7, 2007.

  45. Lin, Z. C. and Chou, M. H., “Design of the Cooling Channels in Nonrectangular Plastic Flat Injection Mold,” J. Mfg. Systs, Vol. 21, No. 3, pp. 167–186, 2002.

    Google Scholar 

  46. Tang, L. Q., Chassapis, C. and Manoochehri, S., “Optimal Cooling System Design for Multi-cavity Injection Molding,” Finite Elements in Analysis and Design, Vol. 26, No. 3, pp. 229–251, 1997.

    Article  MATH  Google Scholar 

  47. Hopkinson, N. and Dickens. P., “Conformal Cooling and Heating Channels Using Laser Sintered Tools,” Proc. of the Solid Freeform Fabrication Symposium, pp. 490–497, 2000.

  48. Mazumder, J., Dutta, D., Kikuchi, N. and Ghosh, A., “Closed Loop Direct Metal Deposition: Art to Part,” Opt. Lasers Eng., Vol. 34, No. 4–6, pp. 397–414, 2000.

    Article  Google Scholar 

  49. Dimla, D. E., Camilotto, M. and Miani, F., “Design and Optimisation of Conformal Cooling Channels in Injection Moulding Tools,” J. Mater. Process. Technol., Vol. 164–165, No. 15, pp. 1294–1300, 2005.

    Article  Google Scholar 

  50. Behalek, L. and Dobransky, J., “Process of Cooling Injection Mould and Quality of Injection Parts,” Acta Technica Corviniensis — Bulletin of Engineering, Tome II, Fascicule 3, pp. 19–24, 2009.

  51. Knights, M., “Rapid Tooling: It’s Faster in Molding, Too,” Plastic Technology Online Article, 2005. http://www.ptonline.com/articles/rapid-tooling-it's-faster-in-molding-too

  52. Jacobs, P. F., “New Frontiers in Mold Construction: High Conductivity Materials & Conformal Cooling Channels. Rapid Prototyping, Rapid Tooling, and Solid Freeform Fabrication for the Next Millennium,” ASME-Publications-MED, Vol. 11, pp. 389–396, 2000.

    Google Scholar 

  53. Beaman, J. J., Atwood, C., Bergman, T. L., Bourell, D., Hollister, S. and Rosen, D., “WTEC Panel Report on Additive/Subtractive Manufacturing Research and Development in Europe,” World Technology Evaluation Center, Panel Report, pp. 63–75, 2004.

  54. Timothy Ruffner, http://www.engineeringexchange.com/profiles/blogs/conformal-cooling-using-dmls

  55. Sanjay, K. and Sisa, P., “Laser-based Additive Manufacturing of Metals,” Advanced Materials Research, Vol. 227, pp. 92–95, 2011.

    Article  Google Scholar 

  56. Ahn, D. G., Kim, H. W. and Lee, K. Y., “Design of the Thermally Conductive Mould to Improve Cooling Characteristics of Injection Mould for a Mouse,” Transactions of the Korean Society of Mechanical Engineers-A, Vol. 33, No. 3, pp. 201–209, 2009.

    Article  Google Scholar 

  57. Park, S. J. and Kwon, T. H., “Optimal Cooling System Design for the Injection Molding Process,” Polym. Engng. Sic., Vol. 38, No. 9, pp. 1450–1462, 1998.

    Article  Google Scholar 

  58. Au, K. M. and Yu, K. M., “A Scaffolding Architecture for Conformal Cooling Design in Rapid Plastic Injection Moulding,” Int. J. Adv. Manuf. Technol., Vol. 34, No. 5–6, pp. 496–515, 2007.

    Article  Google Scholar 

  59. Ahn, D. G., Park, S. H. and Kim, H. S., “Manufacture of an Injection Mould with Rapid and Uniform Cooling Characteristics for the Fan Parts Using a DMT Process,” Int. J. Precis. Eng. Manuf., Vol. 11, No. 6, pp. 915–924, 2010.

    Article  Google Scholar 

  60. Ahn, D. G., Park, M. W., Park, S. W. and Kim, H. S., “Design of the Conformal Cooling Channels for the Mould of a Plastic Drawer of Refrigerator by Analysis of Three-Dimensional Injection Moulding,” Transactions of the Korean Society of Mechanical Engineers-A, Vol. 34, No. 10, pp. 1487–1492, 2010.

    Article  Google Scholar 

  61. Kim, H. S., Lee, K. Y., Suh, J. H. and Ahn, D. G., “Final Report on Strategy Project of Development of Leading Innovation Technology for Medium and Small Industries — Manufacture and Evaluation of the Injection Mould Incorporating Conformal Cooling Channels Using DMF Technologies,” Woosung Inc., Final Project Report, 2010.

  62. Ferreira, J. C. and Mateus, A., “Studies of Rapid Soft Tooling with Conformal Cooling Channels for Plastic Injection Moulding,” J. Mater. Process. Technol., Vol. 142, No. 2, pp. 508–516, 2003.

    Article  Google Scholar 

  63. Mayer, S., “Optimised Mould Temperature Control Procedure Using DMLS,” EOS Whitepaper, EOS GmbH Ltd., pp. 1–10, 2005.(http://www.eos.info/uploads/media/EOS_WP_DMLS2_ENG_12.pdf)

  64. Dalgarno, K. W. and Stewart, T. D., “Manufacture of Production Injection Mould Tooling Incorporating Conformal Cooling Channels via Indirect Selective Laser Sintering,” Proc. of IMechE Part B: J. Engng. Manuf., Vol. 215, No. 10, pp. 1323–1332, 2001.

    Article  Google Scholar 

  65. Ilyas, I., Taylor, C., Dalgarno, K. and Gosden, J., “Design and Manufacture of Injection Mould Tool Inserts Produced Using Indirect SLS and Machining Processes,” Rapid Prototyping J., Vol. 16, No. 6, pp. 429–440, 2010.

    Article  Google Scholar 

  66. Park, H. P., Cha, B. S., Lee, S. Y., Kim, O. R., Kim, Y. G. and Kwon, C. O., “Production of Pre-form Mould by Direct Metal Laser Sintering (DMLS) Process,” Proc. of 2006 KSPE Autumn Conference, pp. 193–194, 2006.

  67. MTT Technology Group, http://www.renishaw.com/mtt-group/us/selective-laser-melting.html

  68. INglass-HRS Flow, http://www.inglass.it/

  69. Fraunhofer ILT, http://www.ilt.fraunhofer.de/eng/101937.html

  70. Plastic Technology, “Hot-Runner Mold Inserts Offer Cooling Enhancement,” 2008. http://www.ptonline.com/products/hotrunner-mold-inserts-offer-cooling-enhancement

  71. MoldMaking Technology, “DMD Conformal Mold Cooling Lines Offer Reduced Part Production Cycle Times,” 2008. http://www.moldmakingtechnology.com/columns/dmd-conformalmold-cooling-lines-offer-reduced-part-production-cycle-times

  72. Ahn, D. G., Park, M. W. and Kim, H. S., “Design of Cooling System for Multi-Sliced Mould with Volumetric Heat Skin via Three-Dimensional Injection Moulding Analysis,” Proc. of KSPE Autumn Conference, pp. 883–884, 2010.

  73. Beal, V. E., Erasenthiran, P., Ahrens, C. H. and Dickens, P., “Evaluating the Use of Functionally Graded Materials Inserts Produced by Selective Laser Melting on the Injection Moulding of Plastics Parts,” Proc. of IMechE Part B: J. Engng. Manuf., Vol. 221, No. 6, pp. 945–954, 2017.

    Article  Google Scholar 

  74. Menges, G., Michaeli, W. and Mohren, P., “How to Make Injection Molds, Third Edition,” HANSER, pp. 12–18, 2001.

  75. Fraunhofer Institute of Laser Technology, “Components made from copper powder open up new opportunities,” 2011. http://www.ilt.fraunhofer.de/eng/ilt/pdf/eng/press/PR_SLM-of-CopperAlloys.pdf

  76. Photonics.com, “Selective Laser Melting Used on Copper,” 2011. http://www.photonics.com/Article.aspx?AID=46066

  77. The Engineering ToolBox, “Thermal Conductivity of Metals,” http://www.engineeringtoolbox.com/thermal-conductivity-metalsd_858.html

  78. Mazumder, J., Schifferer, A. and Choi, J., “Direct Materials Deposition: Designed Macro and Microstructures,” Mat. Res. Innovat., Vol. 3, No. 3, pp. 118–131, 1999.

    Article  Google Scholar 

  79. Szszek, T., “Laser Deposition for Improved AHSS Die Ware,” Presentations of Great Designs in Steel 2003 Seminar, POM Group Inc., 2003. http://www.a-spdev.com/AM/Template.cfm?Section=A_SP_Home&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=10151

  80. Waerman, P. J., “Direct Metal Comes on Strong-Metal Parts and Tooling Take the Spotlight in the Additive Processing World,” DE, 2005. http://www.deskeng.com/articles/aaabdh.htm

  81. Kuzman, K., Geiger, M., Coremans, A., Cser, L. and Kruth, J. P., “Rapid Sheet Metal Development Chain Supported by Laser Sintered Active Tool Parts,” Proc. of the 6th ICTP, pp. 999–104, 1999.

  82. Arthur, A. and Hwee, O. K., “The Feasibility of Rapid Prototyping Forging Dies,” Proc. of the 9th European Conference on Rapid Prototyping and Manufacturing, pp. 163–172, 2000.

  83. Muller, D. H. and Muller, H., “Experiences Using Rapid Prototyping Techniques to Manufacture Sheet Metal Forming Tools,” Proc. of ISATA 2000, pp. 1–9, 2000.

  84. Levy, G. N., “Overview of Layer Manufacturing Technologies, Opportunities, Options and Applications for Rapid Tooling,” Proc. of IMechE Part B: J. Engng. Manuf., Vol. 216,Special Issue, pp. 1621–1634, 2002.

    Article  Google Scholar 

  85. Cheah, C. M., Chua, C. K., Lee, C. W., Lim, S. T., Eu, K. H. and Lin, L. T., “Rapid Sheet Metal Manufacturing. Part 2: Direct Rapid Tooling,” Int. J. Adv. Manuf. Technol., Vol. 19, No. 7, pp. 510–515, 2002.

    Article  Google Scholar 

  86. Baptista, R., Silva, M. B. and Saraiva, C., “Developments for Rapid Tooling Application in Sheet Metal Forming,” Advanced Materials Forum, Vol. 514–516, pp. 1516–1520, 2006.

    Article  Google Scholar 

  87. POM Group Inc., “Tooling Reconfiguration Process,” http://pomgroup.com/images/stories/NuTool.pdf

  88. POM Group Inc., “Surface Hardfacing,” http://www.pomgroup.com/index.php?Itemid=98&id=32&option=com_content&task=view

  89. TWI, “Laser Additive Manufacturing,” http://www.twi.co.uk/content/dmd_lasertwi.html

  90. Ahn, D. G., Kim, S. H., Lee, S. Y. and Lee, C. H., “Wear Characteristics of Hardfaced Surface via Rapid Tooling Process,” Proc. of Spring Annual Meeting for Design and Manufacturing Sector, pp. 116–117, 2010.

  91. POM Group Inc., “Tooling Repair Process,” http://pomgroup.com/images/stories/ToolRX.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Gyu Ahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, DG. Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools — state of the art. Int. J. Precis. Eng. Manuf. 12, 925–938 (2011). https://doi.org/10.1007/s12541-011-0125-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-011-0125-5

Keywords

Navigation