Skip to main content

Advertisement

Log in

Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum lithium alloy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Two-millimeter-thick 2060 Al-Li alloy plates were friction stir welded under a welding speed of 95–150 mm/min and rotation speed of 750–1500 rpm. The effects of welding speed and rotation speed on formation quality, microstructure, secondary phase particles’ transformation, and mechanical properties of the joints were investigated. The results show that defect-free joints are produced for varying friction stir welding (FSW) parameters, and nugget size increases firstly and then decreases with increasing rotation speed or decreasing welding speed. The weld nugget zones (WNZs) have fine dynamically recrystallized grains, and the size decreases to 7.9 μm with increasing rotation speed to 1180 rpm or decreasing welding speed to 118 mm/min, while the grains are coarsened at 1500 rpm or 95 mm/min. A similar trend occurs in the transformation of secondary phase particles, whose size is the smallest in WNZ at 1180 rpm–118 mm/min. All joints exhibit softened zones where the hardness is the lowest, and the joints fracture from WNZs or heat-affected zones. The joints welded at 1180 rpm–118 mm/min perform the highest ultimate tensile strength of 495 MPa, yield strength of 380 MPa, and elongation of 10.2 %. With increasing rotation speed or decreasing welding speed, the strengths and elongation of the joints increase firstly and then decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Jolu T, Morgeneyer TF, Gourgues-Lorenzon AF (2010) Effect of joint line remnant on fatigue lifetime of friction stir welded Al–Cu–Li alloy. Sci Technol Weld Join 15(8):694–698

    Article  Google Scholar 

  2. Decreus B, Deschamps A, Geuser FD, Donnadieu P, Sigli C, Weyland M (2013) The influence of Cu/Li ratio on precipitation in Al–Cu–Li–X alloys. Acta Mater 61:2207–2218

    Article  Google Scholar 

  3. Ma YE, Zhao ZQ, Liu BQ, Li WY (2013) Mechanical properties and fatigue crack growth rates in friction stir welded nugget of 2198-T8 Al-Li alloy joints. Mater Sci Eng A 569:41–47

    Article  Google Scholar 

  4. Donnadieu P, Shao Y, Geuser FD, Botton GA, Lazar S, Cheynet M (2011) Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADFSTEM imaging and small-angle X-ray scattering. Acta Mater 59:462–472

    Article  Google Scholar 

  5. Yan J, Gao M, Li G, Zhang C, Zeng XY, Jiang M (2013) Microstructure and mechanical properties of laser-MIG hybrid welding of 1420 Al-Li alloy. Int J Adv Manuf Tech 66:1467–1473

    Article  Google Scholar 

  6. Shukla AK, Baeslack WA (2009) Study of process/structure/property relationships in friction stir welded thin sheet Al–Cu–Li alloy. Sci Technol Weld Join 14(4):376–387

    Article  Google Scholar 

  7. Arora KS, Pandey S, Schaper M, Kumar R (2010) Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int J Adv Manuf Technol 50(10):941–952

    Article  Google Scholar 

  8. İpekoğlu G, Erim S, Çam G (2014) Effects of temper condition and post weld heat treatment on the microstructure and mechanical properties of friction stir butt welded AA7075 Al-alloy plates. Int J Adv Manuf Technol 70(1):201–213

    Google Scholar 

  9. Feng AH, Ma ZY (2007) Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scr Mater 56(5):397–400

    Article  MathSciNet  Google Scholar 

  10. Xie GM, Ma ZY, Geng L (2007) Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scr Mater 57(2):73–76

    Article  Google Scholar 

  11. Çam G, Mıstıkoğlu S (2014) Recent developments in friction stir welding of Al-alloys. J Mater Eng Perform 23(6):1936–1953

    Article  Google Scholar 

  12. Wei S, Hao C, Chen J (2007) Study of friction stir welding of 01420 aluminum–lithium alloy. Mater Sci Eng A 452:170–177

    Article  Google Scholar 

  13. Bitondo C, Prisco U, Squilace A, Buonadonna P, Dionoro G (2011) Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through. Int J Adv Manuf Technol 53(5–8):505–516

    Article  Google Scholar 

  14. Mahmoud TS, Gaafer AM, Khalifa TA (2008) Effect of tool rotational and welding speeds on microstructural and mechanical characteristics of friction stir welded A319 cast Al alloy. J Mater Sci Technol 24(5):553–559

    Article  Google Scholar 

  15. Sakthivel T, Sengar GS, Mukhopadhyay J (2009) Effect of welding speed on microstructure and mechanical properties of friction-stir-welded aluminum. Int J Adv Manuf Technol 43:468–473

    Article  Google Scholar 

  16. Steuwer A, Dumont M, Altenkirch J, Birosca S, Deschamps A, Prangnell PB, Withers PJ (2011) A combined approach to microstructure mapping of an Al–Li AA2199 friction stir weld. Acta Mater 59:3002–3011

    Article  Google Scholar 

  17. Ma YE, Xia ZC, Jiang RR, Li WY (2013) Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum–lithium alloy joints. Eng Fract Mech 114:1–11

    Article  Google Scholar 

  18. Radisavljevic I, Zivkovic A, Radovic N, Grabulov V (2013) Influence of FSW parameters on formation quality and mechanical properties of Al 2024-T351 butt welded joints. Trans Nonferrous Metals Soc 23:3525–3539

    Article  Google Scholar 

  19. Ren SR, Ma ZY, Chen LQ (2007) Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al-Mg-Si alloy. Scr Mater 56:69–72

    Article  Google Scholar 

  20. Song X, Xing L, Huang CP, Ke LM (2012) Effects of friction stir welding process parameters on welded seam forming and mechanical properties of welded joint for 2198 Al-Li alloy. Mater Mech Eng 36:28–31 (in Chinese)

    Google Scholar 

  21. Qian JW, Li JL, Sun F, Xiong JT, Zhang FS, Lin X (2013) An analytical model to optimize rotation speed and travel speed of friction stir welding for defect-free joints. Scr Mater 68:175–178

    Article  Google Scholar 

  22. Gerlich AP, Shibayanagi T (2011) Liquid film formation and cracking during friction stir welding. Sci Technol Weld Join 16(4):295–299

    Article  Google Scholar 

  23. Karabin LM, Bray GH, Rioja RJ, Venema G (2012) Al-Li-Cu-Mg-(Ag) products for lower wing skin applications. 13th International Conference on Aluminum Alloys (ICAA13)

  24. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 51:713–729

    Article  Google Scholar 

  25. Mao YQ, Ke LM, Liu FC, Liu Q, Huang CP, Xing L (2014) Effect of tool pin eccentricity on microstructure and mechanical properties in friction stir welded 7075 aluminum alloy thick plate. Mater Des 62:334–343

    Article  Google Scholar 

  26. Zhang Z, Liu YL, Chen JT (2009) Effect of shoulder size on the temperature rise and material deformation in friction stir welding. Int J Adv Manuf Technol 45(9):889–895

    Article  Google Scholar 

  27. Prangnell PB, Heason CP (2005) Grain structure formation during friction stir welding observed by the stop action technique. Acta Mater 53(11):3179–3192

    Article  Google Scholar 

  28. Sharma C, Dwivedi DK, Kumar P (2012) Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy. Mater Des 36:379–390

    Article  Google Scholar 

  29. Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater Sci Eng A 459:7–18

    Article  Google Scholar 

  30. Peel M, Steuwer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stresses as a function of welding speed in AA5083 friction stir welds. Acta Mater 51:4791–4801

    Article  Google Scholar 

  31. Sato YS, Urata M, Kokawa H, Ikeda K (2003) Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater Sci Eng A 354:298–305

    Article  Google Scholar 

  32. Xu WF, Liu JH, Zhu HQ, Fu L (2013) Influence of welding parameters and tool pin profile on microstructure and mechanical properties along the thickness in a friction stir welded aluminum alloy. Mater Des 47:599–606

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y., Ke, L., Liu, F. et al. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of 2060 aluminum lithium alloy. Int J Adv Manuf Technol 81, 1419–1431 (2015). https://doi.org/10.1007/s00170-015-7191-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7191-2

Keywords

Navigation