Skip to main content
Log in

Effect of process parameters on friction stir welding of aluminum alloy 2219-T87

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In this work, successful friction stir welding of aluminum alloy 2219 using an adapted milling machine is reported. The downward or forging force was found to be dependent upon shoulder diameter and rotational speed whereas longitudinal or welding force on welding speed and pin diameter. Tensile strength of welds was significantly affected by welding speed and shoulder diameter whereas welding speed strongly affected percentage elongation. Metallographic studies revealed fine equiaxed grains in weld nugget and microstructural changes in thermo-mechanically affected zone were found to be the result of combined and interactive influences of frictional heat and deformation. A maximum joining efficiency of 75% was obtained for welds with reasonably good percentage elongation. TEM studies indicated coarsening and/or dissolving of precipitates in nugget. For the gas metal arc weld, SEM investigations revealed segregation of copper at grain boundaries in partially melted zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas WM, Nicholas ED, Needham JC, Murch, MG, Temple-Smith P, Dawes CJ (1991) G. B. Patent, Application No. 9125978.8

  2. Williams SW (2001) Welding of airframes using friction stir. Air Space Eur 3(3–4):64–66

    Article  Google Scholar 

  3. Lockwood WD, Tomaz B, Reynolds AP (2002) Mechanical response for friction stir welded AA2024: experiment and modeling. Mater Sci Eng, A 323:348–353, PII: S0921-5093(01)01385-5

    Article  Google Scholar 

  4. Minton T, Mynors DJ (2006) Utilization of engineering workshop equipment for friction stir welding. J Mater Process Technol 177(1–3):336–339. doi:10.1016/j.jmatprotec.2006.03.227

    Article  Google Scholar 

  5. Deqing W, Shuhua L, Zhaoxia C (2004) Study of friction stir welding of aluminum. J Mater Sci 39:1689–1693

    Article  Google Scholar 

  6. Johnson R (2001) Forces in friction stir welding of aluminum alloys. Third International Symposium on Friction Stir Welding, Japan

  7. Sorensen CD, Stahl AL (2007) Experimental measurements of load distribution on friction stir weld pin tools. Metall Mater Transaction B 38:451–459. doi:10.1007/s11663-007-9041-6

    Article  Google Scholar 

  8. Cavliere P, Campanile G, Panella F Squillace A (2006) Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding. J Mater Process Technol 180:263–270. doi:10.1016/j.jmatprotec.2006.06.015

    Article  Google Scholar 

  9. Chattopadhyay KD, Verma S, Satsangi PS, Sharma PC (2009) Development of empirical models for different process parameters during rotary electric discharge machining of copper-steel (EN-8) system. J Mater Process Technol 209(3):1454–1465. doi:10.1016/j.jmatprotec.2008.03.068

    Article  Google Scholar 

  10. Zhang Z, Zhang HW (2009) Numerical studies on controlling of process parameters in friction stir welding. J Mater Process Technol 209:241–270. doi:10.1016/j.jmatprotec.2008.01.044

    Article  Google Scholar 

  11. Chen C, Kovacevic R (2004) Thermomechanical modeling and force analysis by friction stir welding by finite element method. Proceedings of the Institution of Mechanical Engineers, Part C. J Mech Eng Sci 218:509–519

    Google Scholar 

  12. Zhang Z, Zhang HW (2007) Numerical studies on effect of axial pressure in friction stir welding. Sci Technol Weld Join 12(3):226–248

    Article  Google Scholar 

  13. Yan J, Sutton MA, Reynolds AP (2005) Process-structure-property relationships for nugget and heat affected zone regions for nugget and heat affected zone regions of AA2524-T351 friction stir welds. Sci Technol Weld Join 10(6):725–736

    Article  Google Scholar 

  14. Lombard H, Hattingh DG, Steuwer A, James MN (2009) Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Mater Sci Eng, A 501:119–124. doi:10.1016/j.jmsea.2008.09.078

    Article  Google Scholar 

  15. Kumar K, Kailas SV (2008) On the role of axial load and effect of interface position on the tensile strength of friction stir welded aluminum alloy. Mater Des 29:791–797. doi:10.1016/j.jmatdes.2007.01.012

    Google Scholar 

  16. Ding RJ, Oelgetz PA (1999) Mechanical property analysis in the retracted pin tool (RPT) region of friction stir welded (FSW) Aluminum-lithium 2195. Proceedings of First International Symposium on Friction Stir Welding, USA

  17. Muthukumaran S, Mukherjee SK (2008) Multi-layered metal flow and formation of onion rings in friction stir welds. Int J Adv Manuf Technol 38:68–73. doi:10.1007/s00170-007-1071-3

    Article  Google Scholar 

  18. Nandan R, DebRoy T, Bhadeshia HKDH (2008) Recent advances in friction stir welding—process weldment structure and properties. Prog Mater Sci 53:980–1023. doi:10.1016/j.jpmatsci.2008.05.001

    Article  Google Scholar 

  19. Li Y, Murr LE, McClure JC (1999) Solid state flow visualization in the friction stir welding of 2024 Al to 6061 Al. Scr Mater 40:1041–1046

    Article  Google Scholar 

  20. De Filippis SA, LAC CP (2007) Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 alloy. Mater Des 28:1124–1129. doi:10.1016/j.jmatdes.2006.01.031

    Google Scholar 

  21. Peel MJ, Steuwer A, Wither PJ, Dickerson T, Shi Q, Shercliff H (2006) Dissimilar friction stir welds on AA5083-AA6082. Part 1 process parameters effects thermal history and weld properties. Metall Mater Trans A 37:2183–2193

    Article  Google Scholar 

  22. Russell MJ, Shercliff HR (1999) Analytical modeling of microstructure development in friction stir welding. Proceedings of the First International Symposium in Friction Stir Welding, USA

  23. Krishnan KN (2002) On the formation of onion rings in friction stir welds. Mater Sci Eng A 327:246–251, PII: S0921-5093(01)01474-5

    Article  Google Scholar 

  24. Elangovan K, Balasubramanian V (2007) Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminum alloy. Mater Sci Eng A 459:7–18. doi:10.1016/j.jmsea.2006.12.124

    Article  Google Scholar 

  25. Paglia CS, Jata KV, Buchheit RG (2006) A cast 7050 friction stir weld with scandium: microstructure, corrosion and environmental assisted cracking. Mater Sci Eng A 424:196–204. doi:10.1016/j.jmsea.2006.03.065

    Article  Google Scholar 

  26. Su JQ, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T651 aluminum. Acta Mater 51:713–729. doi:10.1016/S1359-6454(02)00449-4

    Article  Google Scholar 

  27. Jata KV, Semiatin SL (2000) Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scr Mater 43:743–749, PII: S1359-6462(00)00480-2

    Article  Google Scholar 

  28. Benavides S, Li Y, Murr LE, Brown D, McClure JC (1999) Low temperature friction-stir welding of 2024 aluminum. Scr Mater 41(8):809–815

    Article  Google Scholar 

  29. Fratini L, Buffa G (2007) Continuous dynamic recrystallization phenomena modelling in friction stir welding of aluminium alloys: a neural network-based approach. Proc IMechE Part B: J Engg Manuf 221:857–864. doi:10.1243/09544054JEM674

    Article  Google Scholar 

  30. Zhang Z, Liu YL, Chen JT (2009) Effect of shoulder size on the temperature rise and the material deformation in friction stir welding. Int J Adv Manuf Technol 45:889–895. doi:10.1007/s00170-009-2034-7

    Article  Google Scholar 

  31. Russell AM, Lee KL (2005) Structure—property relations in nonferrous metals. Wiley, New York

    Book  Google Scholar 

  32. Kumar S, Kumar P, Shan HS (2008) Optimization of tensile properties of evaporative pattern casting process through Taguchi’s method. J Mater Process Technol 204(1-3):59–69. doi:10.1016/j.jmatprotec.2007.10.075

    Article  Google Scholar 

  33. Ross PJ (1995) Taguchi techniques for quality engineering: loss functions, orthogonal experiments, parameter and tolerance design. Mc-Graw Hill Professional

  34. Katoh M, Kerr HW (1987) Investigation of heat-affected zone cracking of GTA welds of Al–Mg–Si alloys using the Varestraint test. Weld J 66:360-s–368-s

    Google Scholar 

  35. Miyazaki M, Nishio K, Katoh M, Mukae S, Kerr HW (1990) Quantitative investigation of heat-affected zone cracking in aluminum Alloy 6061. Weld J 69:362-s–371-s

    Google Scholar 

  36. Huang C, Kou S (2004) Liquation cracking in full-penetration Al–Cu welds. Weld J 83:50-s–58-s

    Google Scholar 

  37. Mondolfo LM (1976) Aluminum-copper system. In. Aluminum alloys: structure and properties, pp. 253-278, Butterworths, London, England

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanwer S. Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, K.S., Pandey, S., Schaper, M. et al. Effect of process parameters on friction stir welding of aluminum alloy 2219-T87. Int J Adv Manuf Technol 50, 941–952 (2010). https://doi.org/10.1007/s00170-010-2560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-010-2560-3

Keywords

Navigation