Skip to main content
Log in

Elasticity solutions for nano-plane structures under body forces using lattice elasticity, continualised nonlocal model and Eringen nonlocal model

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper presents exact elasticity solutions for nano-plane structures subjected to any distribution of inplane body forces. In deriving the plane stress solutions, three different models are used. They are a lattice elasticity model called the Hencky bar-grid model (eHBM), the continualised nonlocal plane model (CNM) and Eringen’s nonlocal plane model (ENM). eHBM is a physical structural model comprising a system of rigid bar grids with bars connected by axial and torsional springs. CNM is a nonlocal model derived by continualising the governing discrete equations of the eHBM. ENM is a stress gradient nonlocal model. The use of three models allows independent confirmation of the solutions as well as providing a better understanding of the phenomenological similarities between them. Based on the exact solutions for a nano-plane structure under a partial uniformly inplane body force, it is found that by setting the bar grid length of eHBM to be equal to the characterisitc length \(\ell \) of CNM and ENM, the maximum inplane displacements predicted by eHBM and CNM are in exact agreement when CNM small length scale coefficient \(c_{{0}}=1/\sqrt{12} \). However, the ENM maximum inplane displacements are in agreement with eHBM solutions only when ENM’s small length scale coefficient \(e_{{0}}\) lies between \(1/\sqrt{50} \) and \(1/\sqrt{10} .\) These results confirm some phenomenological similarities among eHBM, CNM and ENM; with CNM being closely related to the eHBM physical structure model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu, C., Ke, L.-L., Yang, J., Kitipornchai, S., Wang, Y.-S.: Buckling and post-buckling analyses of size-dependent piezoelectric nanoplates. Theor. Appl. Mech. Lett. 6, 253–267 (2016). https://doi.org/10.1016/j.taml.2016.10.003

    Article  Google Scholar 

  2. Pan, Z.W., Dai, Z.R., Wang, Z.L.: Nanobelts of Semiconducting Oxides. Science (80-. ). 291, 1947–1949 (2001). https://doi.org/10.1126/science.1058120

  3. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  ADS  Google Scholar 

  4. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967). https://doi.org/10.1016/0020-7683(67)90049-2

    Article  MATH  Google Scholar 

  5. Eringen, A.C.: Nonlocal continuum field theories. Springer, New York (2002)

    MATH  Google Scholar 

  6. Spotz, W.F.: D. Presented at the (1996)

  7. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids. 78, 298–313 (2015). https://doi.org/10.1016/j.jmps.2015.02.001

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Roghani, M., Rouhi, H.: Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs. Contin. Mech. Thermodyn. (2020). https://doi.org/10.1007/s00161-020-00906-z

    Article  Google Scholar 

  9. Nazemizadeh, M., Bakhtiari-Nejad, F., Assadi, A., Shahriari, B.: Nonlinear vibration of piezoelectric laminated nanobeams at higher modes based on nonlocal piezoelectric theory. Acta Mech. 231, 4259–4274 (2020). https://doi.org/10.1007/s00707-020-02736-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: A consistent variational formulation of Bishop nonlocal rods. Contin. Mech. Thermodyn. 32, 1311–1323 (2020). https://doi.org/10.1007/s00161-019-00843-6

  11. Maneshi, M.A., Ghavanloo, E., Fazelzadeh, S.A.: Well-posed nonlocal elasticity model for finite domains and its application to the mechanical behavior of nanorods. Acta Mech. 231, 4019–4033 (2020). https://doi.org/10.1007/s00707-020-02749-w

    Article  MathSciNet  MATH  Google Scholar 

  12. Hache, F., Challamel, N., Elishakoff, I.: Asymptotic derivation of nonlocal plate models from three-dimensional stress gradient elasticity. Contin. Mech. Thermodyn. 31, 47–70 (2019). https://doi.org/10.1007/s00161-018-0622-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Wu, S., Yang, S.: Parametric Study on an Integral-Type Nonlocal Elastoplasticity Model Regularized with Tikhonov-Phillips Method. J. Eng. Mech. 146, 04020140 (2020). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001880

    Article  Google Scholar 

  14. Londono, J.G., Shen, R., Waisman, H.: Temperature-dependent viscoelastic model for asphalt-concrete implemented within a novel nonlocal damage framework. J. Eng. Mech. 146, 04019119 (2020). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001702

    Article  Google Scholar 

  15. Zhang, Z., Challamel, N., Wang, C.M.: Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. J. Appl. Phys. 114, 114902 (2013). https://doi.org/10.1063/1.4821246

    Article  ADS  Google Scholar 

  16. Challamel, N., Zhang, Z., Wang, C.M.: Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams. J. Nanomechanics Micromechanics. 5, A4014004 (2015). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000062

    Article  Google Scholar 

  17. Zhang, Y.P., Challamel, N., Wang, C.M., Zhang, H.: Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. Acta Mech. 230, 885–907 (2019). https://doi.org/10.1007/s00707-018-2326-9

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, C.M., Zhang, Z., Challamel, N., Duan, W.H.: Calibration of Eringen’s small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model. J. Phys. D. Appl. Phys. 46, 345501 (2013). https://doi.org/10.1088/0022-3727/46/34/345501

    Article  Google Scholar 

  19. Lagrange, J.L.: Recherches sur la nature et la propagation du son. Misc. Taur. (Melanges Turin). I, 1–112 (1759)

  20. Lagrange, J.-L.: Mécanique Analytique. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  21. Maugin, G.A.: Nolinear Waves in Elatic Crystals. Oxford University Press, Oxford (1999)

    Google Scholar 

  22. Wieghardt, K.: Über einen Grenzübergang der Elastizitätslehre und seine Anwendung auf die Statik hochgradig statisch unbestimmter Fachwerke. Verhandtlungen des Vereinz z. Beförderung des Gewerbefleisses Abhandlungen. 85, 139–176 (1906)

  23. Riedel, W.: Beiträge zur Lösung des ebenen Problems eines elastischen Körpers mittels der Ayrischen Spannungsfunktion. Zeitschrift futr Angew. Math. und Mech. 7, 169–188 (1927)

    Article  ADS  Google Scholar 

  24. McHenry, D.: A lattice analogy for the solution of stress problems. J. Inst. Civ. Eng. 2, 59–82 (1943)

    Article  Google Scholar 

  25. Hrennikoff, A.: Solution of problems of elasticity by framework method. ASME J. Appl. Mech. 8, A169–A175 (1941)

    Article  MathSciNet  Google Scholar 

  26. Hrennikoff, A.: Framework method and its technique for solving plane stress problems. IABSE Publ. 9, 217–248 (1949)

    Google Scholar 

  27. Cauchy, A.L.: Sur l’équilibre et le mouvement d’un système de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle. Exerc. Math. 3, 188–212 (1828)

    Google Scholar 

  28. Poisson, S.D.: Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoire l’Académie des Sci. l’Institut Fr. 8, 357–570 (1829)

    Google Scholar 

  29. Voigt, V.: Lehrbuch der Krystallphysik. B.G. Teubner, Leipzig (1910)

    Google Scholar 

  30. Foce, F.: The theory of elasticity between molecular and continuum approach in the XIXth century. In: de Grave, P.R., Benvenuto, E. (eds.) Between Mechanics and Architecture. Birkjauser-Verlag, Basel (1995)

    MATH  Google Scholar 

  31. Capecchi, D., Ruta, G., Trovalusci, P.: From classical to Voigt’s molecular models in elasticity. Arch. Hist. Exact Sci. 64, 525–559 (2010). https://doi.org/10.1007/s00407-010-0065-y

    Article  MathSciNet  MATH  Google Scholar 

  32. Born, M., Karman, T. v: Über schwingungen in raumgittern. Phys. Zeit. 8, 297–309 (1912)

  33. Gazis, D.C., Herman, R., Wallis, R.F.: Surface elastic waves in cubic crystals. Phys. Rev. 119, 533–544 (1960). https://doi.org/10.1103/PhysRev.119.533

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Mindlin, R.D.: Lattice theory of shear modes of vibration and torsional equilibrium of simple-cubic crystal plates and bars. Int. J. Solids Struct. 6, 725–738 (1970). https://doi.org/10.1016/0020-7683(70)90013-2

    Article  MATH  Google Scholar 

  35. Wu, C.-W.: A discrete element method for linear and nonlinear stress and bifurcation problems of elastic structures, (1986)

  36. Suiker, A.S.J., Metrikine, A.V., De Borst, R.: Dynamic behaviour of a layer of discrete particles, part 1: analysis of body waves and eigenmodes. J. Sound Vib. 240, 1–18 (2001). https://doi.org/10.1006/jsvi.2000.3202

    Article  ADS  Google Scholar 

  37. Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media. Math. Probl. Eng. 2010, 1–35 (2010). https://doi.org/10.1155/2010/986242

    Article  MATH  Google Scholar 

  38. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Der Eisenbau. 11, 437–452 (1921)

    Google Scholar 

  39. Zhang, Y.P., Wang, C.M., Pedroso, D.M., Zhang, H.: Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. J. Sound Vib. 432, 65–87 (2018). https://doi.org/10.1016/j.jsv.2018.06.029

    Article  ADS  Google Scholar 

  40. Zhang, Y.P., Wang, C.M., Pedroso, D.M.: Hencky bar-net model for buckling analysis of plates under non-uniform stress distribution. Thin-Walled Struct. 122, 344–358 (2018)

    Article  Google Scholar 

  41. Zhang, H., Wang, C.M., Challamel, N., Zhang, Y.P.: Uncovering the finite difference model equivalent to Hencky bar-net model for axisymmetric bending of circular and annular plates. Appl. Math. Model. 61, 300–315 (2018). https://doi.org/10.1016/j.apm.2018.04.019

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, C.M., Zhang, Y.P., Pedroso, D.M.: Hencky bar-net model for plate buckling. Eng. Struct. 150, 947–954 (2017). https://doi.org/10.1016/j.engstruct.2017.07.080

    Article  Google Scholar 

  43. Wang, C.M., Zhang, H., Challamel, N., Pan, W.H.: Hencky Bar-Chain/Net for Structural Analysis. World Scientific (Europe) (2020)

  44. Zhang, Y.P., Wang, C.M., Pedroso, D.M., Zhang, H.: Hencky bar–grid model for plane stress elasticity problems. J. Eng. Mech. 147(5), 04021021 (2021). https://doi.org/10.1061/(ASCE)EM.1943--7889.0001931

  45. Challamel, N., Hache, F., Elishakoff, I., Wang, C.M.: Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models. Compos. Struct. 149, 145–156 (2016). https://doi.org/10.1016/j.compstruct.2016.04.007

    Article  Google Scholar 

  46. Hache, F., Challamel, N., Elishakoff, I., Wang, C.M.: Comparison of nonlocal continualization schemes for lattice beams and plates. Arch. Appl. Mech. 87, 1105–1138 (2017). https://doi.org/10.1007/s00419-017-1235-z

    Article  ADS  Google Scholar 

  47. Zhang, H., Challamel, N., Wang, C.M., Zhang, Y.P.: Exact and nonlocal solutions for vibration of multiply connected bar-chain system with direct and indirect neighbouring interactions. J. Sound Vib. 443, 63–73 (2019). https://doi.org/10.1016/j.jsv.2018.11.037

    Article  ADS  Google Scholar 

  48. Zhang, H., Challamel, N., Wang, C.M., Zhang, Y.P.: Buckling of multiply connected bar-chain and its associated continualized nonlocal model. Int. J. Mech. Sci. 150, 168–175 (2019). https://doi.org/10.1016/j.ijmecsci.2018.10.015

    Article  Google Scholar 

  49. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s Length-Scale Coefficients for Vibration and Buckling of Nonlocal Rectangular Plates with Simply Supported Edges. J. Eng. Mech. 141, 04014117 (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000838

    Article  Google Scholar 

  50. Zhang, H., Wang, C.M., Challamel, N.: Small length scale coefficient for Eringen’s and lattice-based continualized nonlocal circular arches in buckling and vibration. Compos. Struct. 165, 148–159 (2017). https://doi.org/10.1016/j.compstruct.2017.01.020

    Article  Google Scholar 

  51. Timoshenko, S., Woinowshy Krieger, S.: Theory of Plates and Shells. Engineering Societies Monographs. McGraw-Hill, London (1959)

    Google Scholar 

  52. Triantafyllidis, N., Bardenhagen, S.: On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elast. 33, 259–293 (1993). https://doi.org/10.1007/BF00043251

    Article  MathSciNet  MATH  Google Scholar 

  53. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, Q., Wang, C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007). https://doi.org/10.1088/0957-4484/18/7/075702

    Article  ADS  Google Scholar 

  55. Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D. Appl. Phys. 39, 3904–3909 (2006). https://doi.org/10.1088/0022-3727/39/17/029

    Article  ADS  Google Scholar 

  56. Challamel, N., Wang, C.M., Elishakoff, I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. - A/Solids. 44, 125–135 (2014). https://doi.org/10.1016/j.euromechsol.2013.10.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. Int. J. Solids Struct. 51, 4307–4315 (2014). https://doi.org/10.1016/j.ijsolstr.2014.08.017

    Article  Google Scholar 

  58. Hérisson, B., Challamel, N., Picandet, V., Perrot, A., Wang, C.M.: Static and dynamic behaviors of microstructured membranes within nonlocal mechanics. J. Eng. Mech. 144, 04017155 (2018). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001379

    Article  Google Scholar 

  59. Challamel, N., Wang, C.M., Zhang, H., Elishakoff, I.: Lattice-based nonlocal elastic structural models. In: Ghavanloo, E., Fazelzadeh, S.A., de Sciarra, F.M. (eds.) Size-Dependent Continuum Mechanics Approaches: Theory & Applications. Springer, Berlin (2021)

    Google Scholar 

  60. Goldenveizer, A.L., Kaplunov, J.D., Nolde, E.V.: On Timoshenko-Reissner type theories of plates and shells. Int. J. Solids Struct. 30, 675–694 (1993). https://doi.org/10.1016/0020-7683(93)90029-7

    Article  MATH  Google Scholar 

  61. Rosenau, P.: Dynamics of nonlinear mass-spring chains near the continuum limit. Phys. Lett. A. 118, 222–227 (1986). https://doi.org/10.1016/0375-9601(86)90170-2

    Article  ADS  MathSciNet  Google Scholar 

  62. Challamel, N., Wang, C.M., Elishakoff, I.: Nonlocal or gradient elasticity macroscopic models: a question of concentrated or distributed microstructure. Mech. Res. Commun. 71, 25–31 (2016). https://doi.org/10.1016/j.mechrescom.2015.11.006

    Article  Google Scholar 

  63. Challamel, N., Aydogdu, M., Elishakoff, I.: Statics and dynamics of nanorods embedded in an elastic medium: Nonlocal elasticity and lattice formulations. Eur. J. Mech. - A/Solids. 67, 254–271 (2018). https://doi.org/10.1016/j.euromechsol.2017.09.009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. Boresi, A.P., Schmidt, R.J.: Advanced Mechanics of Materials, 6th edn. John Wiley & Sons, New Jersey (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Challamel.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Comparison between Gazis et al. lattice model, Born-Karman (or Suiker et al.) lattice model and Henky bar-grid model

The physical representation of Gazis et al. lattice model [33] for isotropic elasticity case is shown in Fig. 9. In Fig. 9, \(\alpha \) is an axial spring’s stiffness corresponding to the axial forces between two nearest lattices, \(\beta \) is a diagonal spring’s stiffness simulating the interaction forces between two second-nearest lattices and \(\gamma \) is a rotational spring’s stiffness modelling the shear forces between lattices.

Fig. 9
figure 9

Physical representation of Gazis et al. lattice model [33] for plane stress elasticity. Here u and v are inplane displacements in x- and y- directions, respectively. \(\alpha \), \(\beta \) and \(\gamma \) are the stiffnesses of axial springs, diagonal springs and rotational springs, respectively

For plane stress case, the potential energy function associated to the Gazis et al. lattices may be given by

$$\begin{aligned} {\overline{U}}= & {} \sum \nolimits _i \sum \nolimits _j \frac{\alpha }{4}\left[ \left( u_{i+1,j}-u_{i,j} \right) ^{2}+\left( u_{i+1,j+1}-u_{i,j+1} \right) ^{2}+\left( v_{i,j+1}-v_{i,j} \right) ^{2}+\left( v_{i+1,j+1}-v_{i+1,j} \right) ^{2} \right] \nonumber \\&+\frac{\beta }{4}\left[ \left( u_{i+1,j+1}-u_{i,j}+v_{i+1,j+1}-v_{i,j} \right) ^{2}+\left( u_{i+1,j}-u_{i,j+1}+v_{i,j+1}-v_{i+1,j} \right) ^{2} \right] \nonumber \\&+\frac{\gamma }{2}\left[ \left( u_{i,j+1}-u_{i,j}+v_{i+1,j}-v_{i,j} \right) ^{2}+\left( u_{i+1,j+1}-u_{i+1,j}+v_{i+1,j}-v_{i,j} \right) ^{2}\right. \nonumber \\&\left. +\left( u_{i,j+1}-u_{i,j}+v_{i+1,j+1}-v_{i,j+1} \right) ^{2}+\left( u_{i+1,j+1}-u_{i+1,j}+v_{i+1,j+1}-v_{i,j+1} \right) ^{2} \right] . \end{aligned}$$
(A1)

The kinetic energy of each lattice is given by

$$\begin{aligned} {\overline{T}}=\sum \nolimits _i \sum \nolimits _j {\frac{1}{2}\rho h\ell ^{2}\left( {\dot{u}}_{i,j}^{2}+{\dot{v}}_{i,j}^{2} \right) } . \end{aligned}$$
(A2)

where \(\rho \) is the density. According to the Hamilton’s principle,

$$\begin{aligned} \delta \int _{t_{1}}^{t_{2}} \left( {\overline{U}}-{\overline{T}} \right) \mathrm {dt}=0, \end{aligned}$$
(A3)

where \(t_{\mathrm {1}}\) and \(t_{{2}}\) are the initial and final times, we can deduce the following difference equations of this model (see also Eq. (34) of Gazis et al. [33])

$$\begin{aligned}&\alpha \left( u_{i+1,j}-2u_{i,j}+u_{i-1,j} \right) +\frac{\beta }{2}\left( u_{i+1,j+1}+u_{i-1,j+1}+u_{i+1,j-1}+u_{i-1,j-1}-4u_{i,j} \right) \nonumber \\&\quad +4\gamma \left( u_{i,j+1}-2u_{i,j}+u_{i,j-1} \right) \nonumber \\&\quad +\left( \gamma +\frac{\beta }{2} \right) \left( v_{i+1,j+1}+v_{i-1,j-1}-v_{i+1,j-1}-v_{i-1,j+1} \right) =\ell ^{2}h\rho \ddot{u}_{i,j}, \end{aligned}$$
(A4)

and

$$\begin{aligned}&\alpha \left( v_{i,j+1}-2v_{i,j}+v_{i,j-1} \right) +\frac{\beta }{2}\left( v_{i+1,j+1}+v_{i-1,j+1}+v_{i+1,j-1}+v_{i-1,j-1}-4v_{i,j} \right) \nonumber \\&\quad +4\gamma \left( v_{i+1,j}-2v_{i,j}+v_{i-1,j} \right) +\left( \gamma +\frac{\beta }{2} \right) \left( u_{i+1,j+1}+u_{i-1,j-1}-u_{i+1,j-1}-u_{i-1,j+1} \right) =\ell ^{2}h\rho \ddot{v}_{i,j}. \nonumber \\ \end{aligned}$$
(A5)

By using Taylor’s series expansion of Eqs. (45)–(50) and Eqs. (A4) and (A5), we obtain

$$\begin{aligned}&\alpha \left( \ell ^{2}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial x^{4}} \right) +\frac{\beta }{2}\left( 2\ell ^{2}\frac{\partial ^{2}u}{\partial x^{2}}+2\ell ^{2}\frac{\partial ^{2}u}{\partial y^{2}}+\ell ^{4}\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}u}{\partial x^{4}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}u}{\partial y^{4}} \right) \nonumber \\&\quad +4\gamma \left( \ell ^{2}\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial y^{4}} \right) +\left( \gamma +\frac{\beta }{2} \right) \left( 4\ell ^{2}\frac{\partial ^{2}v}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{u}, \nonumber \\ \end{aligned}$$
(A6)

and

$$\begin{aligned}&\alpha \left( \ell ^{2}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial y^{4}} \right) +\frac{\beta }{2}\left( 2\ell ^{2}\frac{\partial ^{2}v}{\partial x^{2}}+2\ell ^{2}\frac{\partial ^{2}v}{\partial y^{2}}+\ell ^{4}\frac{\partial ^{4}v}{\partial x^{2}\partial y^{2}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}v}{\partial x^{4}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}v}{\partial y^{4}} \right) \nonumber \\&\quad +4\gamma \left( \ell ^{2}\frac{\partial ^{2}v}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial x^{4}} \right) +\left( \gamma +\frac{\beta }{2} \right) \left( 4\ell ^{2}\frac{\partial ^{2}u}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{v}. \nonumber \\ \end{aligned}$$
(A7)

The continuum equations of elastodynamics (sometimes called Navier’s equations of elastodynamics) in the plane stress case are given by

$$\begin{aligned} \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}u}{\partial y^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}v}{\partial x\partial y}=\rho \ddot{u}, \end{aligned}$$
(A8)

and

$$\begin{aligned} \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}v}{\partial x^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}u}{\partial x\partial y}=\rho \ddot{v}. \end{aligned}$$
(A9)

By comparing Eqs. (A6) and (A8) or (A7) and (A9) and neglecting higher-order derivatives, we obtain

$$\begin{aligned} \alpha =\frac{Eh}{1+\upsilon }, \beta =\frac{Eh\upsilon }{1-\upsilon ^{2}}, \gamma =\frac{Eh\left( 1-3\upsilon \right) }{8\left( 1-\upsilon ^{2} \right) }. \end{aligned}$$
(A10)

Noting that the special case \(\gamma =0\), means any two adjacent lattices are subjected only to central interaction forces (Poisson’s or Cauchy’s molecular assumption). For plane stress elasticity problems, this special case \(\gamma =0\) implies \(\upsilon =1/3\). Same result had been found by McHenry [24] and Hrennikoff [25, 26] when they solved the plane stress elasticity problems by using discrete truss or frame model.

Fig. 10
figure 10

Physical representation of Born Karman or Suiker et al lattice model [32, 36] for plane stress elasticity. u and v are inplane displacements in x and y directions, respectively. \({\overline{\alpha }}\) and \({\overline{\beta }}\) are longitudinal and diagonal normal spring stiffnesses, respectively. \({\overline{\delta }}\) and \({\overline{\chi }}\) are longitudinal and diagonal shear spring stiffnesses, respectively

The Born-Karman lattice model [32] comprises a system of monatomic simple cubic lattice with same distance l between two nearest lattices. This model considers the axial and shear interaction forces between any two adjacent lattices. The physical representation of Born-Karman lattice model is similar to a lattice model used by Suiker et al. [36] which comprises a system of lattices connected by longitudinal and diagonal springs as shown in Fig. 10. The distance between any two nearest lattices is \({\ell }\). The longitudinal normal springs and diagonal normal springs have the value of stiffnesses  \({\overline{\alpha }}\) and \({\overline{\beta }}\), respectively. The longitudinal shear springs and diagonal shear springs have the value of stiffnesses \({\overline{\delta }}\) and \({\overline{\chi }}\), respectively. Poisson’s effect is modelled by diagonal normal springs.

The difference equations for Born-Karman (or Suiker) lattice model are given by [32, 36]

$$\begin{aligned}&\frac{1}{2}{\overline{\alpha }}\left( 2u_{i+1,j}-4u_{i,j}+2u_{i-1,j} \right) +\frac{1}{2}{\overline{\beta }}\left( u_{i+1,j+1}+u_{i-1,j+1}-4u_{i,j}\right. \nonumber \\&\quad \left. \quad +u_{i-1,j-1}+u_{i+1,j-1}+v_{i+1,j+1}+v_{i-1,j-1}-v_{i-1,j+1}-v_{i+1,j-1} \right) \nonumber \\&\quad +\frac{1}{2}{\overline{\delta }}\left( -{4u}_{i,j}+2u_{i,j+1}+2u_{i,j-1} \right) \nonumber \\&\quad +\frac{1}{2}\overline{\chi }\left( u_{i+1,j+1}+u_{i-1,j+1}-4u_{i,j}+u_{i-1,j-1}+u_{i+1,j-1}-v_{i+1,j+1}\right. \nonumber \\&\left. \quad -v_{i-1,j-1}+v_{i-1,j+1}+v_{i+1,j-1} \right) =\ell ^{2}h\rho \ddot{u}_{i,j}, \end{aligned}$$
(A11)

and

$$\begin{aligned}&\frac{1}{2}{\overline{\alpha }}\left( 2v_{i,j+1}-4v_{i,j}+2v_{i,j-1} \right) +\frac{1}{2}{\overline{\beta }}\left( v_{i+1,j+1}+v_{i-1,j+1}-4v_{i,j}+v_{i-1,j-1}+v_{i+1,j-1}+u_{i+1,j+1}\right. \nonumber \\&\left. \quad +u_{i-1,j-1}-u_{i-1,j+1}-u_{i+1,j-1} \right) +\frac{1}{2}{\overline{\delta }}\left( -{4v}_{i,j}+2v_{i+1,j}+2v_{i-1,j} \right) \nonumber \\&\quad +\frac{1}{2}{\overline{\chi }}\left( v_{i+1,j+1}+v_{i-1,j+1}-4v_{i,j}+v_{i-1,j-1}+v_{i+1,j-1}-u_{i+1,j+1}\right. \nonumber \\&\left. \quad -u_{i-1,j-1}+u_{i-1,j+1}+u_{i+1,j-1} \right) =\ell ^{2}h\rho \ddot{v}_{i,j}. \end{aligned}$$
(A12)

By using Taylor’s series expansion of Eqs. (45)–(50) and Eqs. (A11) and (A12), we obtain

$$\begin{aligned}&{\overline{\alpha }}\left( \ell ^{2}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial x^{4}} \right) +\frac{{\overline{\beta }}+{\overline{\chi }}}{2}\left( 2\ell ^{2}\frac{\partial ^{2}u}{\partial x^{2}}+2\ell ^{2}\frac{\partial ^{2}u}{\partial y^{2}}+\ell ^{4}\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}u}{\partial x^{4}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}u}{\partial y^{4}} \right) \nonumber \\&\quad +{\overline{\delta }}\left( \ell ^{2}\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial y^{4}} \right) +\frac{{\overline{\beta }}+{\overline{\chi }}}{2}\left( 4\ell ^{2}\frac{\partial ^{2}v}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{u},\nonumber \\ \end{aligned}$$
(A13)

and

$$\begin{aligned}&{\overline{\alpha }}\left( \ell ^{2}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial y^{4}} \right) +\frac{{\overline{\beta }}+{\overline{\chi }}}{2}\left( 2\ell ^{2}\frac{\partial ^{2}v}{\partial x^{2}}+2\ell ^{2}\frac{\partial ^{2}v}{\partial y^{2}}+\ell ^{4}\frac{\partial ^{4}v}{\partial x^{2}\partial y^{2}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}v}{\partial x^{4}}+\frac{\ell ^{4}}{3}\frac{\partial ^{4}v}{\partial y^{4}} \right) \nonumber \\&\quad +{\overline{\delta }}\left( \ell ^{2}\frac{\partial ^{2}v}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial x^{4}} \right) +\frac{{\overline{\beta }}+{\overline{\chi }}}{2}\left( 4\ell ^{2}\frac{\partial ^{2}u}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{v}.\nonumber \\ \end{aligned}$$
(A14)

By comparing Eqs. (A13) and (A8) or (A14) and (A9) and neglecting higher-order derivatives, we obtain

$$\begin{aligned} {\overline{\alpha }}=\frac{Eh\left( 3-\upsilon \right) }{4\left( 1-\upsilon ^{2} \right) },\, \, \, \overline{\beta }=\frac{Eh}{4\left( 1-\upsilon \right) }\, ,\, \, {\overline{\delta }}=\frac{Eh\left( 1-3\upsilon \right) }{4\left( 1-\upsilon ^{2} \right) },\, \, \, \overline{\chi }=0. \end{aligned}$$
(A15)

The special case \({\overline{\delta }}=0\) for Born-Karman lattice (no shear interaction) implies \(\upsilon =1/3\). In the case of the assumption of pure central forces, Born-Karman lattice coincides with Gazis et al. lattice with only axial and diagonal springs, which is equivalent to the McHenry truss.

Figure 11 shows the physical representation of eHBM where \(k^{xx}\), \(k^{xy}\) and \(k^{S}\) are the spring stiffnesses for the primary axial springs, secondary axial springs and torsional springs, respectively. Poisson’s effect is simulated by the secondary axial springs. By applying Hamilton’s principle, the difference equations are given by

$$\begin{aligned}&-k^{xx}\left( u_{i+1,j}-2u_{i,j}+u_{i-1,j} \right) -\frac{1}{4}\left[ \left( k^{xy}+k^{yx} \right) +\frac{k^{S}}{\ell ^{2}} \right] \left( v_{i+1,j+1}-v_{i-1,j+1}-v_{i+1,j-1}+v_{i-1,j-1} \right) \nonumber \\&\quad -\frac{k^{S}}{\ell ^{2}}\left( u_{i,j+1}-2u_{i,j}+u_{i,j-1} \right) =-\ell ^{2}h\rho \ddot{u}_{i,j}, \end{aligned}$$
(A16)

and

$$\begin{aligned}&-k^{yy}\left( v_{i,j+1}-2v_{i,j}+v_{i,j-1} \right) -\frac{1}{4}\left[ \left( k^{xy}+k^{yx} \right) +\frac{k^{S}}{\ell ^{2}} \right] \left( u_{i+1,j+1}-u_{i-1,j+1}-u_{i+1,j-1}+u_{i-1,j-1} \right) \nonumber \\&\quad -\frac{k^{S}}{\ell ^{2}}\left( v_{i+1,j}-2v_{i,j}+v_{i-1,j} \right) =-\ell ^{2}h\rho \ddot{v}_{i,j}. \end{aligned}$$
(A17)
Fig. 11
figure 11

Physical representation of Hencky bar-grid model for plane stress elasticity. u and v are inplane displacements in x- and y-directions, respectively. \(k^{xx}\), \(k^{xy}\) and \(k^{s}\) are spring stiffnesses for primary axial springs, secondary axial springs and torsion springs, respectively

By expanding Eqs. (A16) and (A17) using Taylor’s series, we obtain

$$\begin{aligned}&k^{xx}\left( \ell ^{2}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial x^{4}} \right) +\frac{k^{S}}{\ell ^{2}}\left( \ell ^{2}\frac{\partial ^{2}u}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}u}{\partial y^{4}} \right) \nonumber \\&\quad +\frac{1}{4}\left[ \left( k^{xy}+k^{yx} \right) +\frac{k^{S}}{\ell ^{2}} \right] \left( 4\ell ^{2}\frac{\partial ^{2}v}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{u},\nonumber \\ \end{aligned}$$
(A18)

and

$$\begin{aligned}&k^{yy}\left( \ell ^{2}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial y^{4}} \right) +\frac{k^{S}}{\ell ^{2}}\left( \ell ^{2}\frac{\partial ^{2}v}{\partial x^{2}}+\frac{\ell ^{4}}{12}\frac{\partial ^{4}v}{\partial x^{4}} \right) +\frac{1}{4}\left[ \left( k^{xy}+k^{yx} \right) +\frac{k^{S}}{\ell ^{2}} \right] \nonumber \\&\quad \left( 4\ell ^{2}\frac{\partial ^{2}u}{\partial x\partial y}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial x\partial y^{3}}+\frac{2}{3}\ell ^{4}\frac{\partial ^{4}u}{\partial y\partial x^{3}} \right) +O\left( \ell ^{6} \right) =\ell ^{2}h\rho \ddot{v}. \end{aligned}$$
(A19)

By comparing Eqs. (A18) and (A19) to the continuum equations of motion for plane stress elasticity Eqs. (A8) and (A9), we obtain

$$\begin{aligned} k^{xx}=\frac{Eh}{1-\upsilon ^{2}},\, \, \, k^{xy}=k^{yx}=\frac{Evh}{2\left( 1-\upsilon ^{2} \right) },\, \, \, k^{S}=\frac{Eh{\ell }^{2}}{2\left( 1+\upsilon \right) }. \end{aligned}$$
(A20)

By substituting Eqs (A10), (A15) and (A20) into (A6), (A7), (A13), (A14) and (A18), (A19), we obtain the governing differential equation of Gazis et al’s lattice model up to second order:

$$\begin{aligned} \left\{ {\begin{array}{l} \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}u}{\partial y^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}v}{\partial x\partial y}-\rho \ddot{u} \right) }+\ell ^{2}\left[ \frac{E}{12\left( 1+\upsilon \right) }\frac{\partial ^{4}u}{\partial x^{4}}+\frac{E\left( 1-3\upsilon \right) }{24\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}u}{\partial y^{4}} \right] \\ \quad \quad + \ell ^{2}\left[ \frac{E\upsilon }{1-\upsilon ^{2}}\left( \frac{1}{2}\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{1}{6}\frac{\partial ^{4}u}{\partial x^{4}}+\frac{1}{6}\frac{\partial ^{4}u}{\partial y^{4}} \right) +\frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) \right] =0 \\ \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}v}{\partial x^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}u}{\partial x\partial y}-\rho \ddot{v} \right) }+\ell ^{2}\left[ \frac{E}{12\left( 1+\upsilon \right) }\frac{\partial ^{4}v}{\partial y^{4}}+\frac{E\left( 1-3\upsilon \right) }{24\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}v}{\partial x^{4}} \right] \\ \quad \quad + \ell ^{2}\left[ \frac{E\upsilon }{1-\upsilon ^{2}}\left( \frac{1}{2}\frac{\partial ^{4}v}{\partial x^{2}\partial y^{2}}+\frac{1}{6}\frac{\partial ^{4}v}{\partial y^{4}}+\frac{1}{6}\frac{\partial ^{4}v}{\partial x^{4}} \right) +\frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}u}{\partial y\partial x^{3}}+\frac{\partial ^{4}u}{\partial x\partial y^{3}} \right) \right] =0 \\ \end{array}} \right. , \end{aligned}$$
(A21)

the governing differential equation of Born-Karman’s (or Suiker et al.’s) lattice model up to second order:

$$\begin{aligned} \left\{ {\begin{array}{l} \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}u}{\partial y^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}v}{\partial x\partial y}-\rho \ddot{u} \right) }+\ell ^{2}\left[ \frac{E\left( 3-\upsilon \right) }{48\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}u}{\partial x^{4}}+\frac{E\left( 1-3\upsilon \right) }{48\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}u}{\partial y^{4}} \right] \\ \qquad + \ell ^{2}\left[ \frac{E}{4\left( 1-\upsilon \right) }\left( \frac{1}{2}\frac{\partial ^{4}u}{\partial x^{2}\partial y^{2}}+\frac{1}{6}\frac{\partial ^{4}u}{\partial x^{4}}+\frac{1}{6}\frac{\partial ^{4}u}{\partial y^{4}} \right) +\frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) \right] =0 \\ \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}v}{\partial x^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}u}{\partial x\partial y}-\rho \ddot{v} \right) }+\ell ^{2}\left[ \frac{E\left( 3-\upsilon \right) }{48\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}v}{\partial y^{4}}+\frac{E\left( 1-3\upsilon \right) }{48\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}v}{\partial x^{4}} \right] \\ \qquad + \ell ^{2}\left[ \frac{E}{4\left( 1-\upsilon \right) }\left( \frac{1}{2}\frac{\partial ^{4}v}{\partial x^{2}\partial y^{2}}+\frac{1}{6}\frac{\partial ^{4}v}{\partial y^{4}}+\frac{1}{6}\frac{\partial ^{4}v}{\partial x^{4}} \right) +\frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}u}{\partial y\partial x^{3}}+\frac{\partial ^{4}u}{\partial x\partial y^{3}} \right) \right] =0 \\ \end{array}} \right. , \end{aligned}$$
(A22)

and the governing differential equation of Hencky bar-grid model up to second order:

$$\begin{aligned} \left\{ {\begin{array}{l} \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}u}{\partial x^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}u}{\partial y^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}v}{\partial x\partial y}-\rho \ddot{u} \right) }+\ell ^{2}\left[ \frac{E}{12\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}u}{\partial x^{4}}+\frac{E}{24\left( 1+\upsilon \right) }\frac{\partial ^{4}u}{\partial y^{4}} \right] \\ \qquad \qquad + \ell ^{2}\left[ \frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}v}{\partial x\partial y^{3}}+\frac{\partial ^{4}v}{\partial y\partial x^{3}} \right) \right] =0 \\ \underline{\left( \frac{E}{1-\upsilon ^{2}}\frac{\partial ^{2}v}{\partial y^{2}}+\frac{E}{2\left( 1+\upsilon \right) }\frac{\partial ^{2}v}{\partial x^{2}}+\frac{E}{2\left( 1-\upsilon \right) }\frac{\partial ^{2}u}{\partial x\partial y}-\rho \ddot{v} \right) }+\ell ^{2}\left[ \frac{E}{12\left( 1-\upsilon ^{2} \right) }\frac{\partial ^{4}v}{\partial y^{4}}+\frac{E}{24\left( 1+\upsilon \right) }\frac{\partial ^{4}v}{\partial x^{4}} \right] \\ \qquad \qquad + \ell ^{2}\left[ \frac{E}{12\left( 1-\upsilon \right) }\left( \frac{\partial ^{4}u}{\partial y\partial x^{3}}+\frac{\partial ^{4}u}{\partial x\partial y^{3}} \right) \right] =0 \\ \end{array}} \right. . \end{aligned}$$
(A23)

In view of Eqs (A21)–(A23), the governing differential equations of Gaizs et al.’s lattice model, Born-Karman’s (or Suiker et al,’s) lattice model and Hencky bar-grid model all converge towards Navier’s partial differential equations (under line term) when \(\ell \rightarrow 0 \). However, their second-order terms are indeed different. Only for some specific cases such as considering only pure central forces, the governing equations of the compared models can be identical.

The definite positiveness of the discrete lattice energy imposes that the equivalent Poisson’s ratio should be lower than \(\upsilon =1/3\) for Born-Karman lattice (\({\overline{\delta }}\ge 0)\) and Gazis et al. lattice (\({\overline{\gamma }}\ge 0)\), whereas for the eHBM lattice, larger values of the Poisson’s ratio can be considered (\(\upsilon \) could be greater than 1/3).

In conclusion, the physical representation, the governing difference equations and the higher-order continualised equations given by each model are different. However, by matching the second-order derivatives of the contiualised equations to the continuum equations of elastodynamics or Navier’s equations of elastodynamics in the case of plane stress, the force constants and the spring stiffnesses of each model can be calibrated.

It is worth to noting that by multiplying Eqs. (A18) and (A19) by \({1-}\frac{{\ell }^{{2}}}{{12}}\left( \frac{\partial ^{{2}}}{\partial x^{{2}}}{+}\frac{\partial ^{{2}}}{\partial y^{{2}}} \right) \) and then neglecting the higher-order terms, the governing differential equations for CNM (60) and (61) can be restored.

Appendix B: Continualised nonlocal model for one-dimensional discrete model

The governing difference equations given by all discrete lattice or bar-springs models discussed in “Appendix A”, will be the same for one-dimensional elasticity problems. Their difference equation is given by

$$\begin{aligned} E\left( u_{i+1}-2u_{i}+u_{i-1} \right) +b^{x}\ell ^{2}=0. \end{aligned}$$
(B1)

The continualised nonlocal model (CNM) for one-dimensional elasticity problems could be obtained by truncating Eq. (B1) by using a Taylor asymptotic expansion Eq. (45). In this way, the resulting governing equation of CNM is given by

$$\begin{aligned} E\left( \frac{\partial ^{2}u}{\partial x^{2}}+\frac{\ell ^{2}}{12}\frac{\partial ^{4}u}{\partial x^{4}} \right) +b^{x}+O\left( \ell ^{4} \right) =0. \end{aligned}$$
(B2)

Alternatively, the governing equation of CNM can be derived from truncating Eq. (B1) by using a rational expansion of the pseudo-differential operator [61] based on a Padé approximant of order [2, 2] [62, 63] and by neglecting higher-order terms, we can have

$$\begin{aligned} E\frac{\frac{\partial ^{2}}{\partial x^{2}}}{1-\frac{\ell ^{2}}{12}\frac{\partial ^{2}}{\partial x^{2}}}u+b^{x}=0. \end{aligned}$$
(B3)

By multiplying Eq. (B3) by \(1-\frac{\ell ^{2}}{12}\frac{\partial ^{2}}{\partial x^{2}}\), one obtains

$$\begin{aligned} E\frac{\partial ^{2}u}{\partial x^{2}}+\left( 1-\frac{\ell ^{2}}{12}\frac{\partial ^{2}}{\partial x^{2}} \right) b^{x}=0. \end{aligned}$$
(B4)

It can be seen that the governing equation given by later continualisation approach (B4) can avoid higher-order space operator. Furthermore, Eq. (B4) can ensure a definite positive elastic potential function as discussed by Challamel et al. [62, 63]. In views of Eqs. (B2) and (B4), it can be seen that Eq. (B4) can also be derived by multiplying Eq. (B2) by \(\left( 1-\frac{\ell ^{2}}{12}\frac{\partial ^{2}}{\partial x^{2}} \right) \) and neglecting any higher-order terms. This approach is applied to obtain the governing equations of CNM for plane stress elasticity problems.

Appendix C: Hencky bar-grid model for an orthotropic plane structure

In this section, we shall present an example of using the Hencky bar-grid model (eHBM) to model a special type of orthotropic plane structure. According to the Hooke’s law, the continuum equations of elastodynamics (sometimes called Navier’s equations of elastodynamics) in the orthotropic plane stress case are given by [64]

$$\begin{aligned} \frac{E_{x}}{1-\upsilon _{xy}\upsilon _{yx}}\frac{\partial ^{2}u}{\partial x^{2}}+\left( \frac{v_{yx}E_{x}}{1-v_{xy}v_{yx}}+G_{xy} \right) \frac{\partial ^{2}v}{\partial x\partial y}+G_{xy}\frac{\partial ^{2}u}{\partial y^{2}}=\rho \ddot{u}, \end{aligned}$$
(C1)

and

$$\begin{aligned} \frac{E_{y}}{1-\upsilon _{xy}\upsilon _{yx}}\frac{\partial ^{2}v}{\partial y^{2}}+\left( \frac{v_{xy}E_{y}}{1-v_{xy}v_{yx}}+G_{xy} \right) \frac{\partial ^{2}u}{\partial x\partial y}+G_{xy}\frac{\partial ^{2}v}{\partial x^{2}}=\rho \ddot{v}, \end{aligned}$$
(C2)

where \(E_{x}\) and \(E_{y}\) are the Young’s moduli along x- and y-directions, respectively. \(\upsilon _{xy}\) and \(\upsilon _{yx}\) are the Poisson’s ratios with primary strain along x- and y-directions, respectively. \(G_{xy}\) is the shear modulus.

By comparing the continuum equations of motion for orthotropic plane stress elasticity Eqs. (C1) and (C2) to the governing differential equations of eHBM Eqs. (A18) and (A19) with neglecting higher-order terms and assume \(k^{xy}=k^{yx}\), we obtain

$$\begin{aligned} \left\{ {\begin{array}{l} k^{xx}=\frac{E_{x}h}{1-\upsilon _{xy}\upsilon _{yx}}, \\ k^{yy}=\frac{E_{y}h}{1-\upsilon _{xy}\upsilon _{yx}}, \\ \end{array}} \right. \, \, \, k^{xy}=k^{yx}=\frac{\upsilon _{xy}E_{y}h}{2\left( 1-\upsilon _{xy}\upsilon _{yx} \right) }=\frac{\upsilon _{yx}E_{x}h}{2\left( 1-\upsilon _{xy}\upsilon _{yx} \right) },\, \, \, k^{S}=G_{xy}h{\ell }^{2}, \end{aligned}$$
(C3)

if \(\upsilon _{xy}E_{x}=\upsilon _{yx}E_{y}\) or \(E_{x}/E_{y}=\upsilon _{yx}/\upsilon _{xy}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.P., Challamel, N. & Wang, C.M. Elasticity solutions for nano-plane structures under body forces using lattice elasticity, continualised nonlocal model and Eringen nonlocal model. Continuum Mech. Thermodyn. 33, 2453–2480 (2021). https://doi.org/10.1007/s00161-021-01031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01031-1

Keywords

Navigation