Skip to main content
Log in

Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper is concerned with the bending behaviour of small-scale simply supported plates as predicted by using the Eringen nonlocal plate model (ENM), the Hencky bar-net model (HBM) and the continualised nonlocal plate model (CNM). HBM comprises rigid beam segments connected by rotational and torsional springs. CNM is a nonlocal model derived by using a continualisation approach that does away with the unknown scale coefficient \(e_{0}\) in ENM. The exact bending solutions for simply supported rectangular nano-plates are derived by using ENM, HBM and CNM. By making the segment length \(\ell \) of HBM equal to the scale length of continualised and Eringen’s nonlocal plate model and noting the phenomenological similarities between ENM, HBM and CNM, the Eringen’s length scale value \(e_0 \) is found to be dependent on the aspect ratio of the simply supported plate and independent of the applied transverse loading. For a very small scale length \(\ell \), \(e_0\) of ENM converges to values ranging from \(1/\sqrt{8}\) to \(1/\sqrt{6}\) for square plate to longish rectangular plate when calibrated by either HBM or CNM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964). https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  2. Peerlings, R.H.J., Geers, M.G.D., De Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38, 7723–7746 (2001). https://doi.org/10.1016/S0020-7683(01)00087-7

    Article  MATH  Google Scholar 

  3. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972). https://doi.org/10.1016/0020-7225(72)90039-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983). https://doi.org/10.1063/1.332803

    Article  Google Scholar 

  5. Wang, C.M., Zhang, Y.Y., He, X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007). https://doi.org/10.1088/0957-4484/18/10/105401

    Article  Google Scholar 

  6. Wang, C.M., Xiang, Y., Yang, J., Kitipornchai, S.: Buckling of nano-rings/arches based on nonlocal elasticity. Int. J. Appl. Mech. 04, 1250025 (2012). https://doi.org/10.1142/S1758825112500251

    Article  Google Scholar 

  7. Duan, W.H., Wang, C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007). https://doi.org/10.1088/0957-4484/18/38/385704

    Article  Google Scholar 

  8. Wang, Q.: Axisymmetric wave propagation of carbon nanotubes with non-local elastic shell model. Int. J. Struct. Stab. Dyn. 06, 285–296 (2006). https://doi.org/10.1142/S0219455406001964

    Article  Google Scholar 

  9. Aifantis, E.C.: On the gradient approach—relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 49, 1367–1377 (2011). https://doi.org/10.1016/j.ijengsci.2011.03.016

    Article  MathSciNet  MATH  Google Scholar 

  10. Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 121, 151–156 (2017). https://doi.org/10.1016/j.ijmecsci.2016.10.036

    Article  Google Scholar 

  11. Irschik, H., Heuer, R.: Analogies for simply supported nonlocal Kirchhoff plates of polygonal planform. Acta Mech. 229, 867–879 (2018). https://doi.org/10.1007/s00707-017-2005-2

    Article  MathSciNet  MATH  Google Scholar 

  12. Koutsoumaris, C.C., Eptaimeros, K.G.: A research into bi-Helmholtz type of nonlocal elasticity and a direct approach to Eringen’s nonlocal integral model in a finite body. Acta Mech. 229, 3629–3649 (2018). https://doi.org/10.1007/s00707-018-2180-9

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, Y., Yang, L., Zhang, L., Gao, Y.: Size-dependent effect on functionally graded multilayered two-dimensional quasicrystal nanoplates under patch/uniform loading. Acta Mech. 229, 3501–3515 (2018). https://doi.org/10.1007/s00707-018-2177-4

    Article  MathSciNet  Google Scholar 

  14. Barati, M.R.: Vibration analysis of porous FG nanoshells with even and uneven porosity distributions using nonlocal strain gradient elasticity. Acta Mech. 229, 1183–1196 (2018). https://doi.org/10.1007/s00707-017-2032-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Despotovic, N.: Stability and vibration of a nanoplate under body force using nonlocal elasticity theory. Acta Mech. 229, 273–284 (2018). https://doi.org/10.1007/s00707-017-1962-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, H., Wang, C.M., Challamel, N.: Small length scale coefficient for Eringen’s and lattice-based continualized nonlocal circular arches in buckling and vibration. Compos. Struct. 165, 148–159 (2017). https://doi.org/10.1016/j.compstruct.2017.01.020

    Article  Google Scholar 

  17. Duan, W.H., Wang, C.M., Zhang, Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007). https://doi.org/10.1063/1.2423140

    Article  Google Scholar 

  18. Wang, L., Hu, H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B. 71, 1–7 (2005). https://doi.org/10.1103/PhysRevB.71.195412

    Google Scholar 

  19. Zhang, Y.Y., Wang, C.M., Tan, V.B.C.: Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics. Adv. Appl. Math. Mech. 1, 89–106 (2009)

    MathSciNet  Google Scholar 

  20. Sudak, L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003). https://doi.org/10.1063/1.1625437

    Article  Google Scholar 

  21. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Der Eisenbau 11, 437–452 (1921)

    Google Scholar 

  22. Salvadori, M.G.: Numerical computation of buckling loads by finite differences. Trans. Am. Soc. Civ. Eng. 116, 590–624 (1951)

    Google Scholar 

  23. Challamel, N., Hache, F., Elishakoff, I., Wang, C.M.: Buckling and vibrations of microstructured rectangular plates considering phenomenological and lattice-based nonlocal continuum models. Compos. Struct. 149, 145–156 (2016). https://doi.org/10.1016/j.compstruct.2016.04.007

    Article  Google Scholar 

  24. Hache, F., Challamel, N., Elishakoff, I., Wang, C.M.: Comparison of nonlocal continualization schemes for lattice beams and plates. Arch. Appl. Mech. 87, 1105–1138 (2017). https://doi.org/10.1007/s00419-017-1235-z

    Article  Google Scholar 

  25. Silverman, I.K.: Discussion on the paper of “Salvadori M.G., Numerical computation of buckling loads by finite differences”. Trans. Am. Soc. Civ. Eng. 116, 625–626 (1951)

    Google Scholar 

  26. Leckie, F.A., Lindberg, G.M.: The effect of lumped parameters on beam frequencies. Aeronaut. Quart. 14, 224–240 (1963)

    Article  Google Scholar 

  27. El Nashie, M.S.: Stress, Stability and Chaos in Structural Engineering: An Energy Approach. McGraw-Hill, London (1991)

    Google Scholar 

  28. Zhang, H., Wang, C.M.: Hencky bar-chain model for optimal circular arches against buckling. Mech. Res. Commun. 88, 7–11 (2018). https://doi.org/10.1016/j.mechrescom.2018.01.001

    Article  Google Scholar 

  29. Wang, C.M., Zhang, H., Gao, R.P., Duan, W.H., Challamel, N.: Hencky bar-chain model for buckling and vibration of beams with elastic end restraints. Int. J. Struct. Stab. Dyn. 15, 1540007 (2015). https://doi.org/10.1142/S0219455415400076

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, H., Wang, C.M., Challamel, N.: Buckling and vibration of Hencky bar-chain with internal elastic springs. Int. J. Mech. Sci. 119, 383–395 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.031

    Article  Google Scholar 

  31. Zhang, H., Wang, C.M., Ruocco, E., Challamel, N.: Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Eng. Struct. 126, 252–263 (2016). https://doi.org/10.1016/j.engstruct.2016.07.062

    Article  Google Scholar 

  32. Ruocco, E., Zhang, H., Wang, C.M.: Hencky bar-chain model for buckling analysis of non-uniform columns. Structures 6, 73–84 (2016). https://doi.org/10.1016/j.istruc.2016.02.003

    Article  Google Scholar 

  33. Zhang, H., Zhang, Y.P., Wang, C.M.: Hencky bar-net model for vibration of rectangular plates with mixed boundary conditions and point supports. Int. J. Struct. Stab. Dyn. 18, 03 (2017). https://doi.org/10.1142/S0219455418500463

    MathSciNet  Google Scholar 

  34. Wang, C.M., Zhang, Y.P., Pedroso, D.M.: Hencky bar-net model for plate buckling. Eng. Struct. 150, 947–954 (2017). https://doi.org/10.1016/j.engstruct.2017.07.080

    Article  Google Scholar 

  35. Zhang, Y.P., Wang, C.M., Pedroso, D.M.: Hencky bar-net model for buckling analysis of plates under non-uniform stress distribution. Thin-Walled Struct. 122, 344–358 (2018). https://doi.org/10.1016/j.tws.2017.10.039

    Article  Google Scholar 

  36. Zhang, Y.P., Wang, C.M., Pedroso, D.M., Zhang, H.: Extension of Hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts. J. Sound Vib. 432, 65–87 (2018). https://doi.org/10.1016/j.jsv.2018.06.029

    Article  Google Scholar 

  37. Challamel, N., Lerbet, J., Wang, C.M., Zhang, Z.: Analytical length scale calibration of nonlocal continuum from a microstructured buckling model. ZAMM J. Appl. Math. Mech./Zeitschrift für Angew. Math. und Mech. 94, 402–413 (2014). https://doi.org/10.1002/zamm.201200130

    Article  MathSciNet  MATH  Google Scholar 

  38. Challamel, N., Zhang, Z., Wang, C.M.: Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams. J. Nanomech. Micromech. 5, A4014004 (2015). https://doi.org/10.1061/(ASCE)NM.2153-5477.0000062

    Article  Google Scholar 

  39. Wang, C.M., Zhang, Z., Challamel, N., Duan, W.H.: Calibration of Eringen’s small length scale coefficient for initially stressed vibrating nonlocal Euler beams based on microstructured beam model. J. Phys. D Appl. Phys. 46, 345501 (2013). https://doi.org/10.1088/0022-3727/46/34/345501

    Article  Google Scholar 

  40. Zhang, Z., Challamel, N., Wang, C.M.: Eringen’s small length scale coefficient for buckling of nonlocal Timoshenko beam based on microstructured beam model. J. Appl. Phys. 114, 114902 (2013). https://doi.org/10.1063/1.4821246

    Article  Google Scholar 

  41. Wang, C.M., Zhang, H., Challamel, N., Xiang, Y.: Buckling of nonlocal columns with allowance for selfweight. J. Eng. Mech. 142, 04016037 (2016). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001088

    Article  Google Scholar 

  42. Wang, C.M., Zhang, H., Challamel, N., Duan, W.H.: On boundary conditions for buckling and vibration of nonlocal beams. Eur. J. Mech. A/Solids. 61, 73–81 (2017). https://doi.org/10.1016/j.euromechsol.2016.08.014

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s length scale coefficient for buckling of nonlocal rectangular plates from microstructured beam-grid model. Int. J. Solids Struct. 51, 4307–4315 (2014). https://doi.org/10.1016/j.ijsolstr.2014.08.017

    Article  Google Scholar 

  44. Zhang, Z., Wang, C.M., Challamel, N.: Eringen’s length-scale coefficients for vibration and buckling of nonlocal rectangular plates with simply supported edges. J. Eng. Mech. 141, 04014117 (2015). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000838

    Article  Google Scholar 

  45. Wang, Q., Wang, C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18, 075702 (2007). https://doi.org/10.1088/0957-4484/18/7/075702

    Article  Google Scholar 

  46. Timoshenko, S., Woinowshy Krieger, S.: Theory of Plates and Shells. Engineering Societies Monographs. McGraw-Hill, London (1959)

    Google Scholar 

  47. Lu, P., Zhang, P.Q., Lee, H.P., Wang, C.M., Reddy, J.N.: Non-local elastic plate theories. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 3225–3240 (2007). https://doi.org/10.1098/rspa.2007.1903

    Article  MathSciNet  MATH  Google Scholar 

  48. Marcus, H.: Die Theorie elastischer Gewebe, 2nd edn. Springer, Berlin (1932)

    MATH  Google Scholar 

  49. Challamel, N., Reddy, J.N.: Reply to the comments of M.E. Golmakani and J. Rezatalab, Comment on “Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates” (by R. Aghababaei and J.N. Reddy, Journal of Sound and Vibration 326 (2009) 277–289), Journal of Sound Vibration, 333 (2014) 3831–3835. J. Sound Vib. 333, 5654–5656 (2014). https://doi.org/10.1016/j.jsv.2014.06.005

    Article  Google Scholar 

  50. Wifi, A.S., Wu, C.W., Obeid, K.A.: A simple discrete element mechanical model for the stability analysis of elastic structures. In: Kabil, Y.H., Said, M.E. (eds.) Current Advances in Mechanical Design and Production, pp. 149–156. Pergamon Press, Oxford (1989)

    Chapter  Google Scholar 

  51. Wang, C.M., Zhang, Y.Y., Ramesh, S.S., Kitipornchai, S.: Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J. Phys. D Appl. Phys. 39, 3904–3909 (2006). https://doi.org/10.1088/0022-3727/39/17/029

    Article  Google Scholar 

  52. Challamel, N., Wang, C.M., Elishakoff, I.: Discrete systems behave as nonlocal structural elements: bending, buckling and vibration analysis. Eur. J. Mech. A/Solids. 44, 125–135 (2014). https://doi.org/10.1016/j.euromechsol.2013.10.007

    Article  MathSciNet  MATH  Google Scholar 

  53. Triantafyllidis, N., Bardenhagen, S.: On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elast. 33, 259–293 (1993). https://doi.org/10.1007/BF00043251

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Challamel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.P., Challamel, N., Wang, C.M. et al. Comparison of nano-plate bending behaviour by Eringen nonlocal plate, Hencky bar-net and continualised nonlocal plate models. Acta Mech 230, 885–907 (2019). https://doi.org/10.1007/s00707-018-2326-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2326-9

Navigation