Skip to main content
Log in

Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We consider the cylindrical bending problem for an infinite plate as modeled with a family of generalized continuum models, including the micromorphic approach. The models allow to describe length scale effects in the sense that thinner specimens are comparatively stiffer. We provide the analytical solution for each case and exhibits the predicted bending stiffness. The relaxed micromorphic continuum shows bounded bending stiffness for arbitrary thin specimens, while classical micromorphic continuum or gradient elasticity as well as Cosserat models (Neff et al. in Acta Mechanica 211(3–4):237–249, 2010) exhibit unphysical unbounded bending stiffness for arbitrary thin specimens. This finding highlights the advantage of using the relaxed micromorphic model, which has a definite limit stiffness for small samples and which aids in identifying the relevant material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. Here are reported the macroscopic 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the Young modulus

    \(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}} = 2\mu _{\hbox { macro}}\left( 1+\nu _{\hbox { macro}}\right) \), and the bulk modulus \(\kappa _{\hbox { macro}} = \frac{2\mu _{\hbox { macro}} + 3\lambda _{\hbox { macro}}}{3}\).

  2. Note that under the plane stress hypothesis the first Lamé parameter becomes \({\widehat{\lambda }}_{\hbox { macro}} = \frac{2 \, \lambda _{\hbox { macro}} \, \mu _{\hbox { macro}}}{\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}}\) , while the shear modulus \({\widehat{\mu }}_{\hbox { macro}} = \mu _{\hbox { macro}}\) , the Young modulus \({\widehat{E}} = E = \frac{\mu _{\hbox { macro}}(3\lambda _{\hbox { macro}} + 2\mu _{\hbox { macro}})}{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\) , and the Poisson’s ratio \({\widehat{\nu }} = \mu _{\hbox { macro}} = \frac{\lambda _{\hbox { macro}}}{2\lambda _{ \hbox {macro}}+2\mu _{\hbox { macro}}}\) do not change. It is also reported here the more used bending stiffness expression \({\widehat{\lambda }}_{\hbox { macro}} + 2\mu _{\hbox { macro}} = \frac{E_{\hbox { macro}}}{1- \nu _{\hbox { macro}}^2}\) .

  3. Are here reported the 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the 3D Young modulus \(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\), and the micro and the mesoexpression of the Poisson’s ratio in plane stress \(\nu _{ \hbox {micro}} = \frac{\lambda _{\hbox { micro}}}{2\left( \lambda _{\hbox { micro}} + \mu _{\hbox { micro}}\right) }\) and the \(\nu _e = \frac{\lambda _e}{2\left( \lambda _e + \mu _e\right) }\), respectively.

  4. \(\text {sech}(x) := \frac{1}{\text {cosh}(x)} = \frac{2}{e^{x}+e^{-x}}\).

  5. Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are the meso- and the micro-scale 3D bulk modulus.

  6. The equivalent formulation in terms of a rotation vector \(\vartheta :=\hbox {axl} ({\varvec{A}}) \in {\mathbb {R}}^3\) is given in appendix D of [42].

  7. Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are he meso- and the micro-scale 3D bulk modulus.

  8. Note that \(\left\Vert \hbox {Curl} \left( \omega \varvec{\mathbb {1}}\right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = \left\Vert \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = 2 \left\Vert \hbox {axl} \, \left( \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right) \right\Vert ^2_{{\mathbb {R}}^3} = 2 \left\Vert \varvec{\hbox {D}} \omega \right\Vert ^2_{{\mathbb {R}}^3}\)

References

  1. Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Zeitschrift für angewandte Mathematik und Mechanik 89(4), 242–256 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Altenbach, H., Eremeyev, V.A.: Generalized Continua-From the Theory to Engineering Applications, vol. 541. Springer, Berlin (2012)

    Google Scholar 

  3. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  ADS  Google Scholar 

  4. Arroyo, M., Belytschko, T.: Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6), 455–469 (2005)

    Article  MathSciNet  Google Scholar 

  5. Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)

    Article  Google Scholar 

  6. Brcic, M., Canadija, M., Brnic, J.: Estimation of material properties of nanocomposite structures. Meccanica 48(9), 2209–2220 (2013)

    Article  Google Scholar 

  7. Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40(4–6), 485–503 (2005)

    Article  Google Scholar 

  8. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)

    Article  Google Scholar 

  9. d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 39, 299–329 (2020)

    Article  MathSciNet  Google Scholar 

  10. De Cicco, S., Nappa, L.: Torsion and flexure of microstretch elastic circular cylinders. Int. J. Eng. Sci. 35(6), 573–583 (1997)

    Article  Google Scholar 

  11. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)

    MATH  Google Scholar 

  13. Forest, S.: Micromorphic approach to materials with internal length. In: Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2018)

  14. Forest, S.: Micromorphic approach to gradient plasticity and damage. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 499–546. Springer, Berlin (2019)

  15. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MathSciNet  Google Scholar 

  16. Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)

    Article  ADS  Google Scholar 

  17. Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)

    Article  Google Scholar 

  19. Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories. arXiv preprint arXiv:1606.02954 (2016)

  20. Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)

    Article  Google Scholar 

  21. Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Continuum Mech. Thermodyn. 27(6), 1059–1072 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Ieşan, D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9(11), 1047–1060 (1971)

    Article  Google Scholar 

  23. Ieşan, D., Nappa, L.: Saint-Venant’s problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)

    Article  MathSciNet  Google Scholar 

  24. Lakes, R.: Elastic freedom in cellular solids and composite materials. In: Mathematics of Multiscale Materials, pp. 129–153. Springer, Berlin (1998)

  25. Lakes, R., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015)

    Article  ADS  Google Scholar 

  26. Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18(9), 2572–2580 (1983)

    Article  ADS  Google Scholar 

  27. Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum Models Mater. Microstruct. 70, 1–25 (1995)

    MATH  Google Scholar 

  28. Lewintan, P., Müller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. arXiv preprint, arXiv:2011.10573 (2020)

  29. Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)

    Article  MathSciNet  Google Scholar 

  30. Madeo, A., Ghiba, I.D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur. J. Mech. A/Solids 59, 294–322 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  32. Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. Math. Mech. Solids 23(1), 3–42 (2018)

    Article  MathSciNet  Google Scholar 

  33. Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Zeitschrift für Angewandte Mathematik und Mechanik, 97(12):1524–1554 (2017)

  34. Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker-Verlag, Herzogenrath (2004)

  35. Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139, 269–298 (2020)

    Article  MathSciNet  Google Scholar 

  36. Neff, P., Ghiba, I.D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv preprint, arXiv:1504.00448 (2015)

  37. Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)

    Article  Google Scholar 

  40. Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)

    Article  Google Scholar 

  41. Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot. Autom. Lett. 5(3), 4006–4013 (2020)

    Article  Google Scholar 

  42. Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). arXiv preprint (2020)

  43. Rizzi, G.,Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 1–18 (2021)

  44. Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)

    Article  Google Scholar 

  45. Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)

    Article  Google Scholar 

  46. Taliercio, A.: Torsion of micropolar hollow circular cylinders. Mech. Res. Commun. 37(4), 406–411 (2010)

    Article  Google Scholar 

  47. Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)

    Article  ADS  Google Scholar 

  48. Waseem, A., Beveridge, A.J., Wheel, M.A., Nash, D.H.: The influence of void size on the micropolar constitutive properties of model heterogeneous materials. Eur. J. Mech. A/Solids 40, 148–157 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  49. Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)

    Article  Google Scholar 

  50. Zhang, L., Binbin, L., Zhou, S., Wang, B., Xue, Y.: An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2), 251–262 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Angela Madeo and Gianluca Rizzi acknowledge funding from the French Research Agency ANR, “METASMART” (ANR-17CE08-0006). Angela Madeo and Gianluca Rizzi acknowledge support from IDEXLYON in the framework of the “Programme Investissement d’Avenir” ANR-16-IDEX-0005. Patrizio Neff acknowledges support in the framework of the DFG-Priority Programme 2256 “Variational Methods for Predicting Complex Phenomena in Engineering Structures and Materials," Neff 902/10-1, Project-No. 440935806.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Rizzi.

Additional information

Communicated by Marcus Aßmus, Victor A. Eremeyev and Andreas Öchsner.

Dedicated to Holm Altenbach on the occasion of his 65th birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzi, G., Hütter, G., Madeo, A. et al. Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua. Continuum Mech. Thermodyn. 33, 1505–1539 (2021). https://doi.org/10.1007/s00161-021-00984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-00984-7

Keywords

Navigation