Skip to main content
Log in

Mechanics of third-gradient continua reinforced with fibers resistant to flexure in finite plane elastostatics

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A third-gradient continuum model is developed for the deformation analysis of an elastic solid, reinforced with fibers resistant to flexure. This is framed in the second strain gradient elasticity theory within which the kinematics of fibers are formulated, and subsequently integrated into the models of deformations. By means of variational principles and iterated integrations by parts, the Euler equilibrium equation is obtained which, together with the constraints of bulk incompressibility, compose the system of the coupled nonlinear partial differential equations. In particular, a rigorous derivation of the admissible boundary conditions arising in the third gradient of virtual displacement is presented from which the expressions of the triple forces are derived. The resulting triple forces are, in turn, coupled with the Piola-type triple stress and are necessary to determine a unique deformation map. The proposed model predicts smooth and dilatational shear angle distributions, as opposed to those obtained from the first- and second-gradient theory where the resulting shear zones are either non-dilatational or non-smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Voigt, W.: Theoretical studies in the elastic behavior of crystals. Abh. Gesch. Wiss. 34, 1 (1887)

    Google Scholar 

  2. Monecke, J.: Microstructure dependence of material properties of composites. Phys. Status Soldi. (b) 154, 805–813 (1989)

    Article  ADS  Google Scholar 

  3. Hahm, S.W., Khang, D.Y.: Crystallization and microstructure-dependent elastic moduli of ferroelectric P(VDF-TrFE) thin films. Soft Matter 6, 5802–5806 (2010)

    Article  ADS  Google Scholar 

  4. Moravec, F., Holecek, M.: Microstructure-dependent nonlinear viscoelasticity due to extracellular flow within cellular structures. Int. J. Solids Struct. 47, 1876–1887 (2010)

    Article  MATH  Google Scholar 

  5. Boutin, C.: Microstructural effects in elastic composites. Int. J. Solids Struct. 33(7), 1023–1051 (1996)

    Article  MATH  Google Scholar 

  6. Forest, S.: Homogenization methods and the mechanics of generalised continua part 2. Theor. Appl. Mech. 28, 113–143 (2002)

    Article  MATH  Google Scholar 

  7. Mulhern, J.F., Rogers, T.G., Spencer, A.J.M.: A continuum theory of a plastic–elastic fibre-reinforced material. Int. J. Eng. Sci. 7, 129–152 (1969)

    Article  MATH  Google Scholar 

  8. Spencer, A.J.M.: Deformations of Fibre-Reinforced Materials. Oxford University Press, Oxford (1972)

    MATH  Google Scholar 

  9. Pipkin, A.C., Rogers, T.G.: Plane deformations of incompressible fiber-reinforced materials. ASME J. Appl. Mech. 38(8), 634–640 (1971)

    Article  ADS  MATH  Google Scholar 

  10. Toupin, R.A.: Theories of elasticity with couple stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wetensc. B 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  13. Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross section. Int. J. Solids Struct. 23, 485–503 (1987)

    Article  MATH  Google Scholar 

  14. Maugin, G.A., Metrikine, A.V. (eds.): Mechanics of Generalized Continua: One Hundred Years After the Cosserats. Springer, New York (2010)

    MATH  Google Scholar 

  15. Munch, I., Neff, P., Wagner, W.: Transversely isotropic material: nonlinear Cosserat vs. classical approach. Contin. Mech. Therm. 23, 27–34 (2011)

    Article  MATH  Google Scholar 

  16. Neff, P.: A finite-strain elastic-plastic Cosserat theory for polycrystals with grain rotations. Int. J. Eng. Sci. 44, 574–594 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Neff, P.: Existence of minimizers for a finite-strain micro-morphic elastic solid. Pro. R. Soc. Edinb. A 136, 997–1012 (2006)

    Article  MATH  Google Scholar 

  18. Park, S.K., Gao, X.L.: Variational formulation of a modified couple-stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59, 904–917 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fried, E., Gurtin, M.E.: Gradient nanoscale polycrystalline elasticity: intergrain interactions and triple-junction conditions. J. Mech. Phys. Solids 57, 1749–1779 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Spencer, A.J.M., Soldatos, K.P.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non-Linear Mech. 42, 355–368 (2007)

    Article  ADS  Google Scholar 

  21. Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 47, 743–742 (2012)

    Article  Google Scholar 

  22. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472(2185), 20150790 (2016)

    ADS  Google Scholar 

  23. dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016). https://doi.org/10.1016/j.ijsolstr.2015.08.029

    Article  Google Scholar 

  24. dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2017). https://doi.org/10.1007/s10665-016-9865-7

    Article  MathSciNet  MATH  Google Scholar 

  25. Zeidi, M., Kim, C.: Mechanics of an elastic solid reinforced with bidirectional fiber in finite plane elastostatics: complete analysis. Contin. Mech. Thermodyn. 30(3), 573–592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zeidi, M., Kim, C.: Mechanics of fiber composites with fibers resistant to extension and flexure. Math. Mech. Solids. 24(1), 3–17 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kim, C., Zeidi, M.: Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure. Int. J. Eng. Sci. 131, 80–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach à la D’Alembert. Z. Angew. Math. Phys. 63, 1119–1141 (2012). https://doi.org/10.1007/s00033-012-0197-9

    Article  MathSciNet  MATH  Google Scholar 

  30. dell’Isola, F., Corte, A.D., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Pergamon, Oxford (1986)

    MATH  Google Scholar 

  32. Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, Berlin (2005)

    MATH  Google Scholar 

  34. Germain, P.: The method of virtual power in continuum mechanics, part 2: microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  35. Dell’Isola, F., Seppecher, P.: The relationship between edge contact forces, double forces and interstitial working allowed by the principle of virtual power. C. R. Acad. Sci. IIb. Mec. Elsevier, pp. 7 (1995)

  36. Abali, B.E., Muller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  ADS  Google Scholar 

  37. Zeidi, M., Kim, C.I.: Finite plane deformations of elastic solids reinforced with fibers resistant to flexure: complete solution. Arch. Appl. Mech. 88(5), 819–835 (2018)

    Article  ADS  Google Scholar 

  38. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik, vol. III/3. Springer, Berlin (1965)

    Google Scholar 

  39. Reissner, E.: A further note on finite-strain force and moment stress elasticity. Z. Angew. Math. Phys. 38, 665–673 (1987)

    Article  MATH  Google Scholar 

  40. Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46, 774–787 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. dell’Isola, F., Steigmann, D.J.: A Two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015). https://doi.org/10.1007/s00419-018-1344-3

    Article  MathSciNet  MATH  Google Scholar 

  42. Askes, H., Suiker, A., Sluys, L.: A classification of higher-order strain-gradient models—linear analysis. Arch. Appl. Mech. 72, 171–188 (2002). https://doi.org/10.1007/s00419-002-0202-4

    Article  ADS  MATH  Google Scholar 

  43. Alibert, J.J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Steigmann, D.J.: Finite Elasticity Theory. Oxford University Press, Oxford (2017)

    Book  MATH  Google Scholar 

  45. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood Ltd., Chichester (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada via Grant #RGPIN 04742 and the University of Alberta through a start-up grant. Kim would like to thank Dr. David Steigmann for stimulating his interest in this subject and for his continual support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun Il Kim.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finite element analysis of the fourth-order coupled PDE

Appendix: Finite element analysis of the fourth-order coupled PDE

The resulting systems of PDEs (Eqs. (50)–(51)) are sixth-order differential equations with coupled nonlinear terms. The case of such less regular PDEs deserves delicate mathematical treatment as done similarly in [25, 37] and is of particular practical interest. Therefore, it is not trivial to demonstrate numerical analysis procedures regarding FE analysis.

For preprocessing, Eqs. (50)–(51) may be recast as

$$\begin{aligned} \mu \left( Q+\chi _{1,22}\right) -A\chi _{2,2} +B\chi _{2,1}-CQ_{,11}+AS_{,11}= & {} 0, \nonumber \\ \mu \left( R+\chi _{2,22}\right) +A\chi _{1,2} -B\chi _{1,1}-CR_{,11}+AT_{,11}= & {} 0, \nonumber \\ Q-\chi _{1,11}= & {} 0, \nonumber \\ R-\chi _{2,11}= & {} 0, \nonumber \\ S-Q_{,11}= & {} 0, \nonumber \\ T-R_{,11}= & {} 0, \nonumber \\ A-\mu (Q+\chi _{1,22})-CS= & {} 0, \nonumber \\ B-\mu (R+\chi _{2,22})-CT= & {} 0, \end{aligned}$$
(76)

where \(Q=\chi _{1,11}\), \(R=\chi _{2,11}\), \(S=Q_{,11}\) and \(T=R_{,11}\). Thus, we reduced the order of deferential equations from three coupled equations of sixth order to eight coupled equations of second order. In particular, the nonlinear terms (e.g., \(A\chi _{2,2}\), \(B\chi _{2,1}\), etc.) in the above equations can be systematically treated via the Picard iterative procedure;

$$\begin{aligned} -A_{\mathrm{initial}}\chi _{2,2}^{\mathrm{initial}}+B_{\mathrm{initial}}\chi _{2,1}^{\mathrm{initial}}&\Longrightarrow&-A_{0}\chi _{2,2}^{0}+B_{0}\chi _{2,1}^{0}, \nonumber \\ A_{\mathrm{initial}}\chi _{1,2}^{\mathrm{initial}}-B_{\mathrm{initial}}\chi _{1,1}^{\mathrm{initial}}&\Longrightarrow&A_{0}\chi _{1,2}^{0}-B_{0}\chi _{1,1}^{0}, \end{aligned}$$
(77)

where the values of A and B continue to be updated based on their previous estimations (e.g., \(A_{1}\) and \(B_{1}\) are refreshed by their previous pair of \(A_{0}\) and \(B_{0})\) as iteration progresses. Hence, we generalize the above expression for N number of iterations as

$$\begin{aligned} -A_{N-1}\chi _{2,2}^{N-1}+B_{N-1}\chi _{2,1}^{N-1}&\Longrightarrow&-A_{N}\chi _{2,2}^{N}+B_{N}\chi _{2,1}^{N}, \nonumber \\ A_{N-1}\chi _{1,2}^{N-1}-B_{N-1}\chi _{1,1}^{N-1}&\Longrightarrow&A_{N}\chi _{1,2}^{N}-B_{N}\chi _{1,1}^{N}, \end{aligned}$$
(78)

in which the number of iteration can be determined by a convergence criteria.

In addition, the weighted forms of Eq. (76) are obtained by

$$\begin{aligned} 0= & {} \int \limits _{\Omega ^{e}}w_{1}(\mu \left( Q+\chi _{1,22}\right) -A\chi _{2,2}+B\chi _{2,1}-CQ_{,11}+AS_{,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{2}(\mu \left( R+\chi _{2,22}\right) +A\chi _{1,2}-B\chi _{1,1}-CR_{,11}+AT_{,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{3}(Q-\chi _{1,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{4}(R-\chi _{2,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{5}(S-Q_{,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{6}(T-R_{,11})d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{7}(A-\mu (Q+\chi _{1,22})-CS)d\Omega , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{8}(B-\mu (R+\chi _{2,22})-CT)d\Omega . \end{aligned}$$
(79)

Applying integration by parts and Green–Stoke’s theorem (e.g., \(\mu \int _{\Omega ^{e}}w_{1}\chi _{1,22}d\Omega =-\mu \int _{\Omega ^{e}}w_{1,2}\chi _{1,2}d\Omega +\mu \int _{\Omega ^{e}}w_{1}\chi _{1,2}Nd\Gamma \)), we obtain from the above that

$$\begin{aligned} 0= & {} \int \limits _{\Omega ^{e}}(\mu w_{1}Q-\mu w_{1,2}\chi _{1,2}-w_{1}A_{0} \chi _{2,2}+w_{1}B_{0}\chi _{2,1}+Cw_{1,1}Q_{,1}-Aw_{1,1}S_{,1})d\Omega \nonumber \\&+\int \limits _{\partial \Gamma ^{e}}\mu w_{1}\chi _{1,2}Nd\Gamma -\int \limits _{\partial \Gamma ^{e}}Cw_{1}Q_{,1}Nd\Gamma +\int \limits _{\partial \Gamma ^{e}}Aw_{1}S_{,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}(\mu w_{2}R-\mu w_{2,2}\chi _{2,2}+w_{2}A_{0} \chi _{1,2}-w_{2}B_{0}\chi _{1,1}+Cw_{2,1}R_{,1}-Aw_{2,1}T_{,1})d\Omega \nonumber \\&+\int \limits _{\partial \Gamma ^{e}}\mu w_{2}\chi _{2,2}Nd\Gamma -\int \limits _{\partial \Gamma ^{e}}Cw_{2}R_{,1}Nd\Gamma +\int \limits _{\partial \Gamma ^{e}}Aw_{2}T_{,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}(w_{3}Q+w_{3,1}\chi _{1,1})d\Omega -\int \limits _{\partial \Gamma ^{e}}w_{3}\chi _{1,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}(w_{4}R+w_{4,1}\chi _{2,1})d\Omega -\int \limits _{\partial \Gamma ^{e}}w_{4}\chi _{2,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}(w_{5}S+w_{5,1}Q_{,1})d\Omega -\int \limits _{\partial \Gamma ^{e}}w_{5}Q_{,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}(w_{6}T+w_{6,1}R_{,1})d\Omega -\int \limits _{\partial \Gamma ^{e}}w_{6}R_{,1}Nd\Gamma , \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{7}(A_{0}-\mu Q-CS-\mu w_{7,2}\chi _{1,2})d\Omega -\int \limits _{\partial \Gamma ^{e}}\mu w_{7}\chi _{1,2}Nd\Gamma \nonumber \\ 0= & {} \int \limits _{\Omega ^{e}}w_{8}(B_{0}-\mu R-CT-\mu w_{8,2}\chi _{1,2})d\Omega -\int \limits _{\partial \Gamma ^{e}}\mu w_{7}\chi _{2,2}Nd\Gamma , \end{aligned}$$
(80)

where \(\Omega \), \(\partial \Gamma \) and \(\mathbf {N}\) are the domain of interest, the associated boundary, and the rightward unit normal to the boundary \(\partial \Gamma \) in the sense of the Green–Stoke’s theorem, respectively. The unknowns, \(\chi _{1}\), \(\chi _{2}\), Q, R, S, T, A and B can be written in the form of Lagrangian polynomial as

$$\begin{aligned} (*)=\sum _{j=1}^{n=4}[(*)_{j}\Psi _{j}(x, y)]. \end{aligned}$$
(81)

Thus, the test function w is obtained by

$$\begin{aligned} w_{m}=\sum _{i=1}^{n=4}w_{m}^{i}\Psi _{i}(x, y)\quad {\text { and }}\quad m=1,2,3,\ldots ,8. \end{aligned}$$
(82)

Here, \(w_{i}\) is weight of the test function and \(\Psi _{i}(x,y)\) are the shape functions for the four-node rectangular elements such that

$$\begin{aligned} \Psi _{1}=\frac{(x-c)(y-d)}{cd},\Psi _{2}=\frac{x(y-d)}{-cd},~\Psi _{3} =\frac{xy}{cd}\quad {\text { and }}\quad \Psi _{4}=\frac{y(x-c)}{-cd}. \end{aligned}$$
(83)

By means of Eq. (81), Eq. (80) can be rewritten in terms of Lagrangian polynomial representation as

$$\begin{aligned} 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i}\Psi _{j} +C\Psi _{i,1}\Psi _{j,1})d\Omega \right\} Q_{j}\nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}} (\mu \Psi _{i,2}\Psi _{j,2})d\Omega \right\} \chi _{1j}-\sum _{i,j=1}^{n} \left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}A_{0}\Psi _{j,2}-\Psi _{i}B_{0}\Psi _{j,1})d\Omega \right\} \chi _{2j} \nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(A\Psi _{i,1}\Psi _{j,1})d\Omega \right\} S_{j}+\int \limits _{\partial \Gamma ^{e}}(\mu \Psi _{i}\chi _{1,2})Nd\Gamma -\int \limits _{\partial \Gamma ^{e}}(C\Psi _{i}Q_{,1})Nd\Gamma +\int \limits _{\partial \Gamma ^{e}}A\Psi _{i}S_{,1}Nd\Gamma , \nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i}\Psi _{j} +C\Psi _{i,1}\Psi _{j,1})d\Omega \right\} R_{j}\nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i,2}\Psi _{j,2})d\Omega \right\} \chi _{2j}+\sum _{i,j=1}^{n} \left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}A_{0}\Psi _{j,2}-\Psi _{i}B_{0}\Psi _{j,1})d\Omega \right\} \chi _{1j} \nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(A\Psi _{i,1}\Psi _{j,1})d\Omega \right\} T_{j}+\int \limits _{\partial \Gamma ^{e}}(\mu \Psi _{i}\chi _{2,2})Nd\Gamma -\int \limits _{\partial \Gamma ^{e}}(C\Psi _{i}R_{,1})Nd\Gamma +\int \limits _{\partial \Gamma ^{e}}A\Psi _{i}T_{,1}Nd\Gamma , \nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} Q_{j}+\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}\Psi _{i,1}\Psi _{j,1})d\Omega \right\} \chi _{1j}-\int \limits _{\partial \Gamma ^{e}}(\Psi _{i}\chi _{1,1})Nd\Gamma ,\nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} R_{j}+\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}\Psi _{i,1}\Psi _{j,1})d\Omega \right\} \chi _{2j}-\int \limits _{\partial \Gamma ^{e}}(\Psi _{i}\chi _{2,1})Nd\Gamma ,\nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} S_{j}+\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}\Psi _{i,1}\Psi _{j,1})d\Omega \right\} Q_{j}-\int \limits _{\partial \Gamma ^{e}}(\Psi _{i}Q_{,1})Nd\Gamma , \nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} T_{j}+\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}\Psi _{i,1}\Psi _{j,1})d\Omega \right\} R_{j}-\int \limits _{\partial \Gamma ^{e}}(\Psi _{i}R_{,1})Nd\Gamma , \nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} A_{j}-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i} \Psi _{j})d\Omega \right\} Q_{j}-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(C\Psi _{i} \Psi _{j})d\Omega \right\} S_{j} \nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i,2}\Psi _{j,2})d\Omega \right\} \chi _{1j}+\int \limits _{\partial \Gamma ^{e}}(\mu \Psi _{i}\chi _{1,2})Nd\Gamma ,\nonumber \\ 0= & {} \sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\Psi _{i}\Psi _{j})d\Omega \right\} B_{j}-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i} \Psi _{j})d\Omega \right\} R_{j}-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(C\Psi _{i} \Psi _{j})d\Omega \right\} T_{j} \nonumber \\&-\sum _{i,j=1}^{n}\left\{ \int \limits _{\Omega ^{e}}(\mu \Psi _{i,2}\Psi _{j,2})d\Omega \right\} \chi _{2j}+\int \limits _{\partial \Gamma ^{e}}(\mu \Psi _{i}\chi _{2,2})Nd\Gamma . \end{aligned}$$
(84)

Now, for the local stiffness matrices and forcing vectors for each elements, we find

$$\begin{aligned} \left[ \begin{array}{cccc} K_{11}^{11} &{}\quad K_{12}^{11} &{}\quad K_{13}^{11} &{}\quad K_{14}^{11} \\ K_{21}^{11} &{}\quad K_{22}^{11} &{}\quad K_{23}^{11} &{}\quad K_{24}^{11} \\ K_{31}^{11} &{}\quad K_{32}^{11} &{}\quad K_{33}^{11} &{}\quad K_{34}^{11} \\ K_{41}^{11} &{}\quad K_{42}^{11} &{}\quad K_{43}^{11} &{}\quad K_{44}^{11} \end{array}\right] _{\mathrm{Local}}\left[ \begin{array}{c} \chi _{1}^{1} \\ \chi _{1}^{2} \\ \chi _{1}^{3} \\ \chi _{1}^{4} \end{array}\right] _{\mathrm{Local}}=\left[ \begin{array}{c} F_{1}^{1} \\ F_{2}^{1} \\ F_{3}^{1} \\ F_{4}^{1} \end{array}\right] _{\mathrm{Local}}, \end{aligned}$$
(85)

or alternatively, in a compact form,

$$\begin{aligned} \left[ K_{ij}^{11}\right] [\chi _{1}^{i}]=[F_{i}^{1}]\text { for }i, j=1,2,3,4, \end{aligned}$$
(86)

where

$$\begin{aligned} \left[ K_{ij}^{11}\right] =\int \limits _{\Omega ^{e}}(\mu \Psi _{i,2} \Psi _{j,2})d\Omega , \end{aligned}$$
(87)

and

$$\begin{aligned} {[}F_{i}^{1}]=-\mu \int \limits _{\partial \Gamma ^{e}}\Psi _{i} \chi _{1,2}Nd\Gamma +C\int \limits _{\partial \Gamma ^{e}}\Psi _{i}Q_{,1}Nd \Gamma -\int \limits _{\partial \Gamma ^{e}}A\Psi _{i}S_{,1}Nd\Gamma . \end{aligned}$$
(88)

Accordingly, the unknowns (i.e., Q, R, S, T, A and B) can be expressed as

$$\begin{aligned} Q_{i}=\{\chi _{1}^{i}\}_{,11}, R_{i}=\{\chi _{2}^{i}\}_{,11}, S_{i}=\{Q^{i}\}_{,11}\text { etc.} \end{aligned}$$
(89)

Finally, we repeat the same procedures for the rest of components (e.g., \(\left[ K_{ij}^{21}\right] [\chi _{2}^{i}]=[F_{i}^{2}]\), etc.) and thereby obtain the following systems of equations (in the Global form) for each individual elements.

$$\begin{aligned} \left[ \begin{array}{cccccccc} \left[ K^{11}\right] &{}\quad \left[ K^{12}\right] &{}\quad \left[ K^{13}\right] &{}\quad \left[ K^{14}\right] &{}\quad \left[ K^{15}\right] &{}\quad \left[ K^{16}\right] &{}\quad \left[ K^{17}\right] &{}\quad \left[ K^{18}\right] \\ \left[ K^{21}\right] &{}\quad \left[ K^{22}\right] &{}\quad \left[ K^{23}\right] &{}\quad \left[ K^{24}\right] &{}\quad \left[ K^{25}\right] &{}\quad \left[ K^{26}\right] &{}\quad \left[ K^{27}\right] &{}\quad \left[ K^{28}\right] \\ \left[ K^{31}\right] &{}\quad \left[ K^{32}\right] &{}\quad \left[ K^{33}\right] &{}\quad \left[ K^{34}\right] &{}\quad \left[ K^{35}\right] &{}\quad \left[ K^{36}\right] &{}\quad \left[ K^{37}\right] &{}\quad \left[ K^{38}\right] \\ \left[ K^{41}\right] &{}\quad \left[ K^{42}\right] &{}\quad \left[ K^{43}\right] &{}\quad \left[ K^{44}\right] &{}\quad \left[ K^{45}\right] &{}\quad \left[ K^{46}\right] &{}\quad \left[ K^{47}\right] &{}\quad \left[ K^{48}\right] \\ \left[ K^{51}\right] &{}\quad \left[ K^{52}\right] &{}\quad \left[ K^{53}\right] &{}\quad \left[ K^{54}\right] &{}\quad \left[ K^{55}\right] &{}\quad \left[ K^{56}\right] &{}\quad \left[ K^{57}\right] &{}\quad \left[ K^{58}\right] \\ \left[ K^{61}\right] &{}\quad \left[ K^{62}\right] &{}\quad \left[ K^{63}\right] &{}\quad \left[ K^{64}\right] &{}\quad \left[ K^{65}\right] &{}\quad \left[ K^{66}\right] &{}\quad \left[ K^{67}\right] &{}\quad \left[ K^{68}\right] \\ \left[ K^{71}\right] &{}\quad \left[ K^{72}\right] &{}\quad \left[ K^{73}\right] &{}\quad \left[ K^{74}\right] &{}\quad \left[ K^{75}\right] &{}\quad \left[ K^{76}\right] &{}\quad \left[ K^{77}\right] &{}\quad \left[ K^{78}\right] \\ \left[ K^{81}\right] &{}\quad \left[ K^{82}\right] &{}\quad \left[ K^{83}\right] &{}\quad \left[ K^{84}\right] &{}\quad \left[ K^{85}\right] &{}\quad \left[ K^{86}\right] &{}\quad \left[ K^{87}\right] &{}\quad \left[ K^{88}\right] \end{array}\right] _{\mathrm{Global}}\left[ \begin{array}{c} \{\chi _{1}^{i}\} \\ \{\chi _{2}^{i}\} \\ Q_{i} \\ R_{i} \\ A_{i} \\ B_{i} \\ S_{i} \\ T_{i} \end{array}\right] _{\mathrm{Global}}{=}\left[ \begin{array}{c} \{F_{i}^{1}\} \\ \{F^{2}\} \\ \{F^{3}\} \\ \{F^{4}\} \\ \{F^{5}\} \\ \{F^{6}\} \\ \{F^{7}\} \\ \{F^{8}\} \end{array}\right] _{\mathrm{Global}}\!. \end{aligned}$$
(90)

In the simulation, the following convergence criteria are used for both nonlinear terms;

$$\begin{aligned} \left| A_{n+1}-A_{n}\right| =e_{1}\le \varepsilon , \left| B_{n+1}-B_{n}\right| =e_{2}\le \varepsilon \quad {\text { and }}\quad \varepsilon =\text {maximum error}=10^{-4}, \end{aligned}$$
(91)

which demonstrate fast convergence within 20 iterations (see Table 2).

Table 2 Maximum numerical errors with respect to the number of iterations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.I., Islam, S. Mechanics of third-gradient continua reinforced with fibers resistant to flexure in finite plane elastostatics. Continuum Mech. Thermodyn. 32, 1595–1617 (2020). https://doi.org/10.1007/s00161-020-00867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00867-3

Keywords

Navigation