Skip to main content
Log in

A third gradient-based continuum model for the mechanics of continua reinforced with extensible bidirectional fibers resistant to flexure

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The mechanics of fiber-reinforced composite materials is presented within the framework of the second strain gradient theory. As such, a continuum-based model is developed for the analysis of elastic materials reinforced with bidirectional fibers and subjected to finite plane deformations. The obtained model is subsequently applied to the cases of the unidirectional fiber composites for the purpose of model implementation. The Euler equilibrium equations and the associated boundary conditions are obtained via the variational principle and iterative integration by parts. In particular, we formulate the complete expressions of Piola-type triple stress and its coupled triple force arising in the third gradient of continuum deformations, which, in turn, yield the unique deformation maps in the presence of admissible boundary conditions of higher order. The solutions of the resulting systems of differential equations are obtained via the custom-built numerical scheme from which smooth and dilatational shear angle distributions are predicted throughout the entire domain of interest. It is also observed that the third gradient constitutive parameter is associated with the volume dilatation of third-gradient continua, which may be appeared in the form of shear band inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yashas Gowda, T.G., Sanjay, M.R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B.: Polymer matrix-natural fiber composites: an overview. Cogent Eng. 5, 1446667 (2018)

    Google Scholar 

  2. Sherif, G., Chukov, D., Tcherdyntsev, V., Torokhov, V.: Effect of formation route on the mechanical properties of the polyethersulfone composites reinforced with glass fibers. Polymers (Basel) 11, 1364 (2019)

    Google Scholar 

  3. Movahedi, N., Linul, E.: Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions. Mater. Lett. 206, 182–184 (2017)

    Google Scholar 

  4. Monteiro, S.N., de Assis, F.S., Ferreira, C.L., Simonassi, N.T., Weber, R.P., Oliveira, M.S., Colorado, H.A., Pereira, A.C.: Fique fabric: a promising reinforcement for polymer composites. Polymers 10, 246 (2018)

    Google Scholar 

  5. Chukov, D., Nematulloev, S., Zadorozhnyy, M., Tcherdyntsev, V., Stepashkin, A., Zherebtsov, D.: Structure, mechanical and thermal properties of polyphenylene sulfide and polysulfone impregnated carbon fiber composites. Polymers 11, 684 (2019)

    Google Scholar 

  6. Kelly, A., Davies, G.J.: The principles of the fibre reinforcement of metals. Metall. Rev. 10, 1–77 (1965)

    Google Scholar 

  7. Kelly, A.: Strong Solids. Clarendon Press, Oxford (1966)

    Google Scholar 

  8. Spencer, A.J.M.: A theory of the failure of ductile materials reinforced by elastic fibres. Int. J. Mech. Sci. 7, 197–209 (1965)

    Google Scholar 

  9. Mulhern, J.F., Rogers, T.G., Spencer, A.J.M.: A continuum model for fibre-reinforced plastic materials. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 301, 473–492 (1967)

    ADS  MATH  Google Scholar 

  10. Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)

    ADS  Google Scholar 

  11. Hashin, Z.: On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry. J. Mech. Phys. Solids 13, 119–134 (1965)

    ADS  Google Scholar 

  12. Adkins, J.E., Rivlin, R.S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci 248, 201–223 (1955)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Spencer, A.J.M.: Deformations of Fibre-Reinforced Materials. Oxford University, Press, London (1972)

    MATH  Google Scholar 

  14. Spencer, A.J.M., Soldatos, K.P.: Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness. Int. J. Non Linear Mech. 42, 355–368 (2007)

    ADS  Google Scholar 

  15. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  16. Dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22, 852–872 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Dell’Isola, F., Seppecher, P., Madeo, A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: Approach “D’Alembert’’. Zeitschrift fur Angew. Math. und Phys. 63, 1119–1141 (2012)

    ADS  MATH  Google Scholar 

  18. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17, 85–112 (1964)

    MathSciNet  MATH  Google Scholar 

  19. Koiter, W.T.: Couple-stresses in the theory of elasticity. Proc. K. Ned. Akad. Wetensc. 67, 17–44 (1964)

    MathSciNet  MATH  Google Scholar 

  20. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9, 241–257 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Suiker, A.S.J., de Borst, R., Chang, C.S.: Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149, 161–180 (2001)

    MATH  Google Scholar 

  22. El Jarroudi, M.: Homogenization of a nonlinear elastic fibre-reinforced composite: a second gradient nonlinear elastic material. J. Math. Anal. Appl. 403, 487–505 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 47, 734–742 (2012)

    ADS  Google Scholar 

  24. Steigmann, D.J.: Equilibrium of elastic lattice shells. J. Eng. Math. 109, 47–61 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Steigmann, D.J., Dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31, 373–382 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A 335, 419–454 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M., Eugster, S.R., Pfaff, A., Hoschke, K., Langkemper, R., Turco, E., Sarikaya, R., Misra, A., De Angelo, M., D’Annibale, F., Bouterf, A., Pinelli, X., Misra, A., Desmorat, B., Pawlikowski, M., Dupuy, C., Scerrato, D., Peyre, P., Laudato, M., Manzari, L., Göransson, P., Hesch, C., Hesch, S., Franciosi, P., Dirrenberger, J., Maurin, F., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M., Muller, W., Abali, B.E., Liebold, C., Ganzosch, G., Harrison, P., Drobnicki, R., Igumnov, L., Alzahrani, F., Hayat, T.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin. Mech. Thermodyn. 31, 1231–1282 (2019)

    ADS  Google Scholar 

  28. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Google Scholar 

  29. Anthoine, A.: Effect of couple-stresses on the elastic bending of beams. Int. J. Solids Struct. 37, 1003–1018 (2000)

    MATH  Google Scholar 

  30. Eremeyev, V.A., Skrzat, A., Vinakurava, A.: Application of the micropolar theory to the strength analysis of bioceramic materials for bone reconstruction. Strength Mater. 48, 573–582 (2016)

    Google Scholar 

  31. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    ADS  Google Scholar 

  32. Abouelregal, A.E., Marin, M.: The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 8, 1128 (2020)

    Google Scholar 

  33. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    MATH  Google Scholar 

  34. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    ADS  MATH  Google Scholar 

  35. Paolone, A., Vasta, M., Luongo, A.: Flexural-torsional bifurcations of a cantilever beam under potential and circulatory forces I: non-linear model and stability analysis. Int. J. Non Linear Mech. 41, 586–594 (2006)

    ADS  Google Scholar 

  36. Luongo, A., Romeo, F.: Real wave vectors for dynamic analysis of periodic structures. J. Sound Vib. 279, 309–325 (2005)

    ADS  Google Scholar 

  37. Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J. Sound Vib. 288, 1027–1047 (2005)

    ADS  Google Scholar 

  38. Ojaghnezhad, F., Shodja, H.M.: Surface elasticity revisited in the context of second strain gradient theory. Mech. Mater. 93, 220–237 (2016)

    Google Scholar 

  39. Forest, S., Cardona, J.-M., Sievert, R.: Thermoelasticity of second-grade media. In: Maugin, G.A., Drouot, R., Sidoroff, F. (eds.) Continuum Thermomechanics: The Art and Science of Modelling Material Behaviour, pp. 163–176. Springer, Dordrecht (2002)

    Google Scholar 

  40. Marin, M., Öchsner, A.: The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Contin. Mech. Thermodyn. 29, 1365–1374 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Kim, C.I., Islam, S.: Mechanics of third-gradient continua reinforced with fibers resistant to flexure in finite plane elastostatics. Contin. Mech. Thermodyn. 32, 1595–1617 (2020)

    ADS  MathSciNet  Google Scholar 

  42. Bolouri, S.E.S., Kim, C.I.: A model for the second strain gradient continua reinforced with extensible fibers in plane elastostatics. Contin. Mech. Thermodyn. 33, 2141–2165 (2021)

    ADS  MathSciNet  Google Scholar 

  43. Dill, E.H.: Kirchhoff’s theory of rods. Arch. Hist. Exact Sci. 44, 1–23 (1992)

    MathSciNet  MATH  Google Scholar 

  44. Antman, S.S.: Elasticity. Nonlinear problems of elasticity. Appl. Math. Sci. 457–530 (1995)

  45. Kim, C.I., Zeidi, M.: Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure. Int. J. Eng. Sci. 131, 80–99 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Zhao, M., Li, M.: Interpreting the change in shear band inclination angle in metallic glasses. Appl. Phys. Lett. 93, 241906 (2008)

    ADS  Google Scholar 

  47. Zhao, M., Li, M.: A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses. J. Mater. Res. 24, 2688–2696 (2009)

    ADS  Google Scholar 

  48. Germain, P.: Method of virtual power in continuum mechanics. 2. Microstruct. SIAM J. Appl. Math. 25, 556–575 (1973)

    MATH  Google Scholar 

  49. Javili, A., Dellisola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Steigmann, D.J.: Invariants of the stretch tensors and their application to finite elasticity theory. Math. Mech. Solids 7, 393–404 (2002)

    MathSciNet  MATH  Google Scholar 

  51. Dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472, 20150790 (2016)

    ADS  Google Scholar 

  52. Kuhn, M.R.: 4—Loading, movement, and strength. In: Kuhn, M.R. (ed.) Granular Geomechanics, pp. 153–227. Elsevier (2017)

  53. Nizolek, T., Pollock, T., McMeeking, R.: Kink band and shear band localization in anisotropic perfectly plastic solids. J. Mech. Phys. Solids 146, 104183 (2021)

    MathSciNet  Google Scholar 

  54. Wei, Q., Jia, D., Ramesh, K.T., Ma, E.: Evolution and microstructure of shear bands in nanostructured Fe. Appl. Phys. Lett. 81, 1240–1242 (2002)

    ADS  Google Scholar 

  55. Duan, X.J., Jain, M.K., Bruhis, M., Wilkinson, D.S.: Experimental and numerical study of intense shear banding for Al-alloy under uniaxial tension. Adv. Mater. Res. 6–8, 737–744 (2005)

    Google Scholar 

  56. Karimi, K., Barrat, J.L.: Correlation and shear bands in a plastically deformed granular medium. Sci. Rep. 8, 4021 (2018)

    ADS  Google Scholar 

  57. Anand, L., Su, C.: A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses. J. Mech. Phys. Solids 53, 1362–1396 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Lund, A.C., Schuh, C.A.: The Mohr–Coulomb criterion from unit shear processes in metallic glass. Intermetallics 12, 1159–1165 (2004)

    Google Scholar 

  59. Vandembroucq, D., Roux, S.: Mechanical noise dependent aging and shear banding behavior of a mesoscopic model of amorphous plasticity. Phys. Rev. B. 84, 134210 (2011)

    ADS  Google Scholar 

  60. Makedonska, N., Sparks, D.W., Aharonov, E., Goren, L.: Friction versus dilation revisited: insights from theoretical and numerical models. J. Geophys. Res. Solid Earth 116, B09302 (2011)

    ADS  Google Scholar 

  61. McDonald, S.A., Holzner, C., Lauridsen, E.M., Reischig, P., Merkle, A.P., Withers, P.J.: Microstructural evolution during sintering of copper particles studied by laboratory diffraction contrast tomography (LabDCT). Sci. Rep. 7, 5251 (2017)

    ADS  Google Scholar 

  62. Kobayakawa, M., Miyai, S., Tsuji, T., Tanaka, T.: Local dilation and compaction of granular materials induced by plate drag. Phys. Rev. E 98, 052907 (2018)

    ADS  Google Scholar 

  63. Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Chung-Ang University Research Grants in 2022 and the Natural Sciences & Engineering Research Council of Canada via Grant #RGPIN 04742. Kim would like to thank Dr. David Steigmann for stimulating his interest in this subject and for discussions concerning the underlying theory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seunghwa Yang or Chun Il Kim.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Finite element analysis of the sixth-order coupled PDE

Appendix: Finite element analysis of the sixth-order coupled PDE

The resulting systems of PDEs (Eqs. 8789) are sixth-order coupled nonlinear differential equations. Demonstrating numerical analysis approaches for coupled PDE systems, especially those with higher order terms, is not trivial. For preprocessing, (Eqs. 8789) can be recast as:

$$\begin{aligned}{} & {} \mu (Q+\chi _{1,22})-AS+BD+\frac{E_{1}}{2} (3QC^{2}+QD^{2}+2CRD-Q)-C_{1}M+A_{1}M_{,11}=0, \nonumber \\{} & {} \mu (R+\chi _{2,22})+AG-BC+\frac{E_{1}}{2} (3RD^{2}+RC^{2}+2CQD-R)-C_{1}N+A_{1}N_{,11}=0, \nonumber \\{} & {} Q-\chi _{1,11}=0, \nonumber \\{} & {} R-\chi _{2,11}=0, \nonumber \\{} & {} C-\chi _{1,1}=0, \nonumber \\{} & {} D-\chi _{2,1}=0, \nonumber \\{} & {} G-\chi _{1,2}=0, \nonumber \\{} & {} S-\chi _{2,2}=0, \nonumber \\{} & {} M-Q_{,11}=0, \nonumber \\{} & {} N-R_{,11}=0, \nonumber \\{} & {} A-\mu (Q+\chi _{1,22})-C_{1}M=0, \nonumber \\{} & {} B-\mu (R+\chi _{2,22})-C_{1}N=0, \end{aligned}$$
(104)

where \(A=p_{,1},\) \(B=p_{,2},\) \(Q=\chi _{1,11},\) \(R=\chi _{2,11},\) \(C=\chi _{1,1},\) \(D=\chi _{2,1},\) \(G=\chi _{1,2},\) \(S=\chi _{2,2},\) \(M=Q_{,11}\) and \( N=R_{,11}.\) As a result, we were able to reduce a sixth-order partial differential coupled system of equations to a second-order system of coupled PDEs. The above nonlinear terms (i.e., \(A\chi _{2,2},B\chi _{2,1}\) etc.) can be treated via the Picard iterative procedure,

$$\begin{aligned}{} & {} -A_{\textrm{initial}}\chi _{2,2}^{\textrm{initial}}+B_{\textrm{initial}}\chi _{2,1}^{\textrm{initial}}\Rightarrow -A_{0}\chi _{2,2}^{0}+B_{0}\chi _{2,1}^{0}, \nonumber \\{} & {} \quad A_{\textrm{initial}}\chi _{1,2}^{\textrm{initial}}-B_{\textrm{initial}}\chi _{1,1}^{\textrm{initial}}\Rightarrow A_{0}\chi _{1,2}^{0}+B_{0}\chi _{1,1}^{0}, \nonumber \\{} & {} \quad -3Q_{\textrm{initial}}C_{\textrm{initial}}^{2}+Q_{\textrm{initial}}D_{\textrm{initial}}^{2}+2C_{\textrm{initial}}R_{\textrm{initial}}D_{\textrm{initial}}\Rightarrow 3Q_{0}C_{0}^{2}+Q_{0}D_{0}^{2}+2C_{0}R_{0}D_{0}, \nonumber \\{} & {} \quad -3R_{\textrm{initial}}D_{\textrm{initial}}^{2}+R_{\textrm{initial}}C^{2}+2C_{\textrm{initial}}Q_{\textrm{initial}}D_{\textrm{initial}}\Rightarrow 3R_{0}D_{0}^{2}+R_{0}C_{0}^{2}+2C_{0}Q_{0}D_{0}, \end{aligned}$$
(105)

where the values of ABCDGSQ,  and R continue to be refreshed based on their previous estimations (i.e., \( A_{0},B_{0},C_{0},D_{0},G_{0},S_{0},Q_{0}\) and \(R_{0}\)) as iteration progresses. As a result, the above expression can be generalized to N number of iterations as

$$\begin{aligned}{} & {} -A_{N-1}\chi _{2,2}^{N-1}+B_{N-1}\chi _{2,1}^{N-1}\Rightarrow -A_{N}\chi _{2,2}^{N}+B_{N}\chi _{2,1}^{N}, \nonumber \\{} & {} \quad A_{N-1}\chi _{1,2}^{N-1}-B_{N-1}\chi _{1,1}^{N-1}\Rightarrow A_{N}\chi _{1,2}^{N}+B_{N}\chi _{1,1}^{N}, \nonumber \\{} & {} \quad 3Q_{N-1}C_{N-1}^{2}+Q_{N-1}D_{N-1}^{2}+2C_{N-1}R_{N-1}D_{N-1}\Rightarrow 3Q_{N}C_{N}^{2}+Q_{N}D_{N}^{2}+2C_{N}R_{N}D_{N}, \nonumber \\{} & {} \quad 3R_{N-1}D^{2}+R_{N-1}C_{N-1}^{2}+2C_{N-1}Q_{N-1}D_{N-1}\Rightarrow 3R_{N}D_{N}^{2}+R_{N}C_{N}^{2}+2C_{N}Q_{N}D_{N}. \end{aligned}$$
(106)

A convergence criteria can be used to determine the number of iterations. Thus, the weak form of Eq. (104) is obtained by

$$\begin{aligned}{} & {} \int _{\Omega ^{e}}w_{1}(\mu (Q+\chi _{1,22})-A_{0}S+B_{0}D+\frac{E_{1}}{2} (3QC_{0}^{2}+QD_{0}^{2}+2RC_{0}D_{0}-Q)-C_{1}M+A_{1}M_{,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{2}(\mu (R+\chi _{2,22})+A_{0}G-B_{0}C+\frac{E_{1}}{2} (3RD_{0}^{2}+RC_{0}^{2}+2QC_{0}D_{0}-R)-C_{1}N+A_{1}N_{,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{3}(Q-\chi _{1,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{4}(R-\chi _{2,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{5}\left( C-\chi _{1,1}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{6}\left( D-\chi _{2,1}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{7}\left( G-\chi _{1,2}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{8}\left( S-\chi _{2,2}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{9}(M-Q_{,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{10}(N-R_{,11})\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{11}(A-\mu (Q+\chi _{1,22})-C_{1}M)\textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}w_{12}(B-\mu (R+\chi _{2,22})-C_{1}N)\textrm{d}\Omega =0. \end{aligned}$$
(107)

Using integration by parts and Green–Stoke’s theorem (e.g., \(\int _{\Omega ^{e}}w_{1}\chi _{1,11}\textrm{d}\Omega =\int _{\partial \Gamma ^{e}}\left( w_{1}\chi _{1,1}\right) N\textrm{d}\Gamma -\int _{\Omega ^{e}}w_{1,1}\chi _{1,1}\textrm{d}\Omega \)). We obtain from the above that

$$\begin{aligned}{} & {} \int _{\Omega ^{e}}w_{1}\mu Q-\mu w_{1,2}\chi _{1,2}-w_{1}A_{0}S+w_{1}B_{0}D+w_{1}\frac{E_{1}}{2} (3QC_{0}^{2}+QD_{0}^{2}+2RC_{0}D_{0}-Q)-w_{1}C_{1}M \nonumber \\{} & {} \quad -\, A_{1}w_{1,1}M_{,1})\textrm{d}\Omega +\int _{\partial \Gamma ^{e}}\left( \mu w_{1}\chi _{1,2}\right) N\textrm{d}\Gamma +\int _{\partial \Gamma ^{e}}\left( A_{1}w_{1}M_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{2}\mu R-\mu w_{2,2}\chi _{2,2}+w_{2}A_{0}G-w_{2}B_{0}C+w_{2}\frac{E_{1}}{2} (3RD_{0}^{2}+RC_{0}^{2}+2QC_{0}D_{0}-R)-w_{2}C_{1}N \nonumber \\{} & {} \quad -\, A_{1}w_{2,1}N_{,1})\textrm{d}\Omega +\int _{\partial \Gamma ^{e}}\left( \mu w_{2}\chi _{2,2}\right) N\textrm{d}\Gamma +\int _{\partial \Gamma ^{e}}\left( A_{1}w_{2}N_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{3}Q+w_{3,1}\chi _{1,1})\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( w_{3}\chi _{1,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{4}R+w_{4,1}\chi _{2,1})\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( w_{4}\chi _{2,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}\left( w_{5}C-w_{5}\chi _{1,1}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}\left( w_{6}D-w_{6}\chi _{2,1}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}\left( w_{7}G-w_{7}\chi _{1,2}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}\left( w_{8}S-w_{8}\chi _{2,2}\right) \textrm{d}\Omega =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{9}M+w_{9,1}Q_{,1})\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( w_{9}Q_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{10}N+w_{10,1}R_{,1})\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( w_{10}R_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{11}A-w_{11}\mu Q+\mu w_{11,2}\chi _{1,2}-w_{11}C_{1}M)\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( \mu w_{11}\chi _{1,2}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \int _{\Omega ^{e}}(w_{12}B-w_{12}\mu R+\mu w_{12,2}\chi _{2,2}-w_{12}C_{1}N)\textrm{d}\Omega -\int _{\partial \Gamma ^{e}}\left( \mu w_{12}\chi _{2,2}\right) N\textrm{d}\Gamma =0, \end{aligned}$$
(108)

where \(\Omega \), \(\partial \Gamma \) and \(\textbf{N}\) are the domain of interest, the associated boundary, and the rightward unit normal to the boundary in the sense of the Green–Stoke’s theorem respectively. The unknowns \(\chi _{1},\) \(\chi _{2},Q,\) RCDGSMNA and B can be expressed in the form of Lagrangian polynomial as

$$\begin{aligned} \left( *\right) =\sum _{j=1}^{n=4}\left[ \left( *\right) _{j}\Psi _{j}(x,y)\right] , \end{aligned}$$
(109)

where \(\left( *\right) \) represents any of the twelve unknowns. Therefore, the test function w is obtained as

$$\begin{aligned} \left( w_{k}\right) =\sum _{i=1}^{n=4}\left[ w_{k}^{i}\Psi _{i}(x,y)\right] ; \text { }k=1,2,3,4,\ldots 12, \end{aligned}$$
(110)

where \(w_{i}\) is the weight of the test function and \(\Psi _{i}(x,y)\) are the corresponding shape function for the four-node rectangular elements such that

$$\begin{aligned} \Psi _{1}=\frac{(x-2)(y-1)}{2},\Psi _{2}=\frac{x(y-1)}{-2},\Psi _{3}=\frac{xy }{2}\text { and }\Psi _{4}=\frac{y(x-2)}{-2}. \end{aligned}$$
(111)

Equation (108) can be reacst using Eqs. (109) and (110) as

$$\begin{aligned}{} & {} \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i}\Psi _{j}+3 \frac{E_{1}}{2}\Psi _{i}\Psi _{j}C_{0}^{2}+\frac{E_{1}}{2}\Psi _{i}\Psi _{j}D_{0}^{2}-\frac{E_{1}}{2}\Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} Q_{j}\\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i,2}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{1j}\\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}A_{0}\right) \textrm{d}\Omega \right\} S_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}B_{0}\right) \textrm{d}\Omega \right\} D_{j}\\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}C_{1}+\Psi _{i,1}\Psi _{j,1}A_{1}\right) \textrm{d}\Omega \right\} M_{j}\\{} & {} \quad +\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \frac{E_{1}}{2}\Psi _{i}2\Psi _{j}C_{0}D_{0}\right) \textrm{d}\Omega \right\} R_{j}+\int _{\partial \Gamma ^{e}}\left( \mu \Psi _{i}\chi _{1,2}\right) N\textrm{d}\Gamma +\left( \int _{\partial \Gamma ^{e}}A_{1}\Psi _{i}M_{,1}\right) N\textrm{d}\Gamma =0, \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i}\Psi _{j}+3 \frac{E_{1}}{2}\Psi _{i}\Psi _{j}D_{0}^{2}+\frac{E_{1}}{2}\Psi _{i}\Psi _{j}C_{0}^{2}-\frac{E_{1}}{2}\Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} R_{j}\\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i,2}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{2j}\\{} & {} \quad +\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}A_{0}\right) \textrm{d}\Omega \right\} G_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}B_{0}\right) \textrm{d}\Omega \right\} C_{j}\\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}C_{1}+\Psi _{i,1}\Psi _{j,1}A_{1}\right) \textrm{d}\Omega \right\} N_{j}\\{} & {} \quad +\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \frac{E_{1}}{2}\Psi _{i}2\Psi _{j}C_{0}D_{0}\right) \textrm{d}\Omega \right\} Q_{j}+\int _{\partial \Gamma ^{e}}\left( \mu \Psi _{i}\chi _{2,2}\right) N\textrm{d}\Gamma +\int _{\partial \Gamma ^{e}}\left( A_{1}\Psi _{i}N_{,1}\right) N\textrm{d}\Gamma =0,\\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} Q_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i,1}\Psi _{j,1}\right) \textrm{d}\Omega \right\} \chi _{1j}-\int _{\partial \Gamma ^{e}}\left( \Psi _{i}\chi _{1,1}\right) N\textrm{d}\Gamma =0, \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} R_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i,1}\Psi _{j,1}\right) \textrm{d}\Omega \right\} \chi _{2j}-\int _{\partial \Gamma ^{e}}\left( \Psi _{i}\chi _{2,1}\right) N\textrm{d}\Gamma =0, \end{aligned}$$
$$\begin{aligned}{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} C_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j,1}\right) \textrm{d}\Omega \right\} \chi _{1j}=0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} D_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j,1}\right) \textrm{d}\Omega \right\} \chi _{2j}=0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} G_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{1j}=0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} S_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{2j}=0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} M_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i,1}\Psi _{j,1}\right) \textrm{d}\Omega \right\} Q_{j}-\int _{\partial \Gamma ^{e}}\left( \Psi _{i}Q_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} N_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i,1}\Psi _{j,1}\right) \textrm{d}\Omega \right\} R_{j}-\int _{\partial \Gamma ^{e}}\left( \Psi _{i}R_{,1}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} A_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} Q_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i,2}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{1j} \nonumber \\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}C_{1}\right) \textrm{d}\Omega \right\} M_{j}-\int _{\partial \Gamma ^{e}}\left( \mu \Psi _{i}\chi _{1,2}\right) N\textrm{d}\Gamma =0, \nonumber \\{} & {} \quad \times \, \sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} B_{j}-\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i}\Psi _{j}\right) \textrm{d}\Omega \right\} R_{j}+\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \mu \Psi _{i,2}\Psi _{j,2}\right) \textrm{d}\Omega \right\} \chi _{2j} \nonumber \\{} & {} \quad -\sum _{i,j=1}^{n}\left\{ \int _{\Omega ^{e}}\left( \Psi _{i}\Psi _{j}C_{1}\right) \textrm{d}\Omega \right\} N_{j}-\int _{\partial \Gamma ^{e}}\left( \mu \Psi _{i}\chi _{2,2}\right) N\textrm{d}\Gamma =0. \end{aligned}$$
(112)

The local stiffness matrix and forcing vector for each element can be found as

$$\begin{aligned} \begin{bmatrix} K_{11}^{11} &{} K_{12}^{11} &{} K_{13}^{11} &{} K_{14}^{11} \\ K_{21}^{11} &{} K_{22}^{11} &{} K_{23}^{11} &{} K_{24}^{11} \\ K_{31}^{11} &{} K_{32}^{11} &{} K_{33}^{11} &{} K_{34}^{11} \\ K_{41}^{11} &{} K_{42}^{11} &{} K_{43}^{11} &{} K_{44}^{11} \end{bmatrix} _{\text {Local}} \begin{bmatrix} \chi _{1}^{1} \\ \chi _{1}^{2} \\ \chi _{1}^{3} \\ \chi _{1}^{4} \end{bmatrix} _{\text {Local}}= \begin{bmatrix} F_{1}^{1} \\ F_{2}^{1} \\ F_{3}^{1} \\ F_{4}^{1} \end{bmatrix} _{\text {Local}}, \end{aligned}$$
(113)

or alternatively, in a compact form,

$$\begin{aligned} \begin{bmatrix} K_{ij}^{11} \end{bmatrix} \begin{bmatrix} \chi _{1}^{i} \end{bmatrix} = \begin{bmatrix} F_{i}^{1} \end{bmatrix} \text { for }i,j=1,2,3,4, \end{aligned}$$
(114)

where

$$\begin{aligned} \begin{bmatrix} K_{ij}^{11} \end{bmatrix} =-\int _{\Omega ^{e}}\left( \mu \Psi _{i,2}\Psi _{j,2}\right) \textrm{d}\Omega , \end{aligned}$$
(115)

and

$$\begin{aligned} \begin{bmatrix} F_{i}^{1} \end{bmatrix} =-\int _{\partial \Gamma ^{e}}\left( \mu \Psi _{i}\chi _{1,2}\right) N\textrm{d}\Gamma -\left( \int _{\partial \Gamma ^{e}}A_{1}\Psi _{i}M_{,1}\right) N\textrm{d}\Gamma . \end{aligned}$$
(116)

Finally, we obtain the following global systems of equations for each individual elements as

$$\begin{aligned} \begin{bmatrix} \left[ K^{11}\right] &{} \left[ K^{12}\right] &{} \left[ K^{13}\right] &{} \left[ K^{14}\right] &{}\ldots &{} \left[ K^{19}\right] &{} \left[ K^{110}\right] &{} \left[ K^{111}\right] &{} \left[ K^{112}\right] \\ \left[ K^{21}\right] &{} \left[ K^{22}\right] &{} \left[ K^{23}\right] &{} \left[ K^{24}\right] &{}\ldots &{} \left[ K^{29}\right] &{} \left[ K^{210}\right] &{} \left[ K^{211}\right] &{} \left[ K^{212}\right] \\ \left[ K^{31}\right] &{} \left[ K^{32}\right] &{} \left[ K^{33}\right] &{} \left[ K^{34}\right] &{}\ldots &{} \left[ K^{39}\right] &{} \left[ K^{310}\right] &{} \left[ K^{311}\right] &{} \left[ K^{312}\right] \\ \left[ K^{41}\right] &{} \left[ K^{42}\right] &{} \left[ K^{43}\right] &{} \left[ K^{44}\right] &{}\ldots &{} \left[ K^{49}\right] &{} \left[ K^{410}\right] &{} \left[ K^{411}\right] &{} \left[ K^{412}\right] \\ \left[ K^{51}\right] &{} \left[ K^{52}\right] &{} \left[ K^{53}\right] &{} \left[ K^{54}\right] &{}\ldots &{} \left[ K^{59}\right] &{} \left[ K^{510}\right] &{} \left[ K^{511}\right] &{} \left[ K^{512}\right] \\ \left[ K^{61}\right] &{} \left[ K^{62}\right] &{} \left[ K^{63}\right] &{} \left[ K^{64}\right] &{}\ldots &{} \left[ K^{69}\right] &{} \left[ K^{610}\right] &{} \left[ K^{611}\right] &{} \left[ K^{612}\right] \\ \left[ K^{71}\right] &{} \left[ K^{72}\right] &{} \left[ K^{73}\right] &{} \left[ K^{74}\right] &{}\ldots &{} \left[ K^{79}\right] &{} \left[ K^{710}\right] &{} \left[ K^{711}\right] &{} \left[ K^{712}\right] \\ \left[ K^{81}\right] &{} \left[ K^{82}\right] &{} \left[ K^{83}\right] &{} \left[ K^{84}\right] &{}\ldots &{} \left[ K^{89}\right] &{} \left[ K^{810}\right] &{} \left[ K^{811}\right] &{} \left[ K^{812}\right] \\ \left[ K^{91}\right] &{} \left[ K^{92}\right] &{} \left[ K^{93}\right] &{} \left[ K^{94}\right] &{}\ldots &{} \left[ K^{99}\right] &{} \left[ K^{910}\right] &{} \left[ K^{911}\right] &{} \left[ K^{912}\right] \\ \left[ K^{101}\right] &{} \left[ K^{102}\right] &{} \left[ K^{103}\right] &{} \left[ K^{104}\right] &{}\ldots &{} \left[ K^{109}\right] &{} \left[ K^{1010}\right] &{} \left[ K^{1011}\right] &{} \left[ K^{1012}\right] \\ \left[ K^{111}\right] &{} \left[ K^{112}\right] &{} \left[ K^{113}\right] &{} \left[ K^{114}\right] &{}\ldots &{} \left[ K^{119}\right] &{} \left[ K^{1110}\right] &{} \left[ K^{1111}\right] &{} \left[ K^{1112}\right] \\ \left[ K^{121}\right] &{} \left[ K^{122}\right] &{} \left[ K^{123}\right] &{} \left[ K^{124}\right] &{}\ldots &{} \left[ K^{129}\right] &{} \left[ K^{1210}\right] &{} \left[ K^{1211}\right] &{} \left[ K^{1212}\right] \end{bmatrix} \begin{bmatrix} \chi _{1}^{i} \\ \chi _{2}^{i} \\ Q_{i} \\ R_{i} \\ C_{i} \\ D_{i} \\ G_{i} \\ S_{i} \\ M_{i} \\ N_{i} \\ A_{i} \\ B_{i} \end{bmatrix} {\tiny =} \begin{bmatrix} \left\{ F^{1}\right\} \\ \left\{ F^{2}\right\} \\ \left\{ F^{3}\right\} \\ \left\{ F^{4}\right\} \\ \left\{ F^{5}\right\} \\ \left\{ F^{6}\right\} \\ \left\{ F^{7}\right\} \\ \left\{ F^{8}\right\} \\ \left\{ F^{9}\right\} \\ \left\{ F^{10}\right\} \\ \left\{ F^{11}\right\} \\ \left\{ F^{12}\right\} \end{bmatrix}. \end{aligned}$$
(117)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.H., Yang, S. & Kim, C.I. A third gradient-based continuum model for the mechanics of continua reinforced with extensible bidirectional fibers resistant to flexure. Continuum Mech. Thermodyn. 35, 563–593 (2023). https://doi.org/10.1007/s00161-023-01198-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-023-01198-9

Keywords

Navigation