Skip to main content
Log in

On the use of topology optimized band gap structures for the realization of second-order acoustic topological insulators with valley-selective corner states

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Second-order acoustic topological insulators (SATIs) hosting corner states provide unprecedented opportunities for realizing robust transport of sound in higher dimensions. However, current SATIs are mainly designed by trial and error method based on physical intuition, seriously limiting their performances. Here, we use the topology optimized acoustic crystals (ACs) to create SATIs hosting valley-selective corner states. Instead of opening the first-order band gap by reducing the lattice symmetry from C3v to C3, we directly restrict the AC with C3 symmetry and maximize its first-order band gap via topology optimization. The SATIs are created by arranging the optimized AC and its inversion-symmetric partner. Extra-wide edge states are formed at the domain between the optimized AC and its inversion-symmetric partner. Importantly, the edge gap is significantly enlarged, enabling more localized corner states. The valley-selectivity of corner states is further demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Benalcazar WA, Bernevig BA, Hughes TL (2017a) Quantized electric multipole insulators. Science 357(6346):61–66

    Article  MathSciNet  MATH  Google Scholar 

  • Benalcazar WA, Bernevig BA, Hughes TL (2017b) Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys Rev B 96(24):245115

    Article  Google Scholar 

  • Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Cham

    MATH  Google Scholar 

  • Bilal OR and Hussein MI (2011) Optimization of phononic crystals for the simultaneous attenuation of out-of-plane and in-plane waves. In: ASME 2011 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers. pp. 969-972

  • Bilal OR, Hussein MI (2011) Ultrawide phononic band gap for combined in-plane and out-of-plane waves. Phys Rev E 84(6):065701

    Article  Google Scholar 

  • Chen Y, Meng F, Sun G, Li G, Huang X (2017a) Topological design of phononic crystals for unidirectional acoustic transmission. J Sound Vib 410:102–123

    Article  Google Scholar 

  • Chen Y, Huang X, Sun G, Yan X, Li G (2017b) Maximizing spatial decay of evanescent waves in phononic crystals by topology optimization. Comput Struct 182:430–447

    Article  Google Scholar 

  • Chen Y, Meng F, Li G, Huang X (2018) Designing photonic materials with complete band gaps by topology optimization. Smart Mater Struct 28(1):015025

    Article  Google Scholar 

  • Chen Y, Meng F, Jia B, Li G, Huang X (2019a) Inverse design of photonic topological insulators with extra-wide band gaps. Phys Status Solidi 13:1900175

    Google Scholar 

  • Chen Y, Guo D, Li YF, Li G, Huang X (2019b) Maximizing wave attenuation in viscoelastic phononic crystals by topology optimization. Ultrasonics 94:419–429

    Article  Google Scholar 

  • Chen Y, Meng F, Li G, Huang X (2019c) Topology optimization of photonic crystals with exotic properties resulting from Dirac-like cones. Acta Mater 164:377–389

    Article  Google Scholar 

  • Chen Y, Meng F, Kivshar Y, Jia B, Huang X (2020) Inverse design of higher-order photonic topological insulators. Phys Rev Res 2(2):023115

    Article  Google Scholar 

  • Chen Y, Meng F, Lan Z, Jia B, Huang X (2021a) Dual-polarization second-order photonic topological insulators. Phys Rev Appl 15(3):034053

    Article  Google Scholar 

  • Chen Y, Lan Z, Li J, Zhu J (2021b) Topologically protected second harmonic generation via doubly resonant high-order photonic modes. Phys Rev B 104(15):155421

    Article  Google Scholar 

  • Chen Y, Meng F, Huang X (2021c) Creating acoustic topological insulators through topology optimization. Mech Syst Signal Process 146:107054

    Article  Google Scholar 

  • Chen Y, Li J, Zhu J (2022a) Topology optimization of quantum spin Hall effect-based second-order phononic topological insulator. Mech Syst Signal Process 164:108243

    Article  Google Scholar 

  • Chen Y, Meng F, Zhu J, Huang X (2022b) Inverse design of second-order photonic topological insulators in C3-symmetric lattices. Appl Math Model 102:194–206

    Article  MathSciNet  Google Scholar 

  • Christiansen RE, Sigmund O (2016) Designing meta material slabs exhibiting negative refraction using topology optimization. Struct Multidisc Optim 54(3):469–482

    Article  MathSciNet  Google Scholar 

  • Christiansen RE, Wang F, Sigmund O (2019a) Topological insulators by topology optimization. Phys Rev Lett 122(23):234502

    Article  Google Scholar 

  • Christiansen RE, Wang F, Sigmund O, Stobbe S (2019b) Designing photonic topological insulators with quantum-spin-Hall edge states using topology optimization. Nanophotonics 8(8):1363–1369

    Article  Google Scholar 

  • Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X, Cheng J (2019) Experimental demonstration of acoustic Chern insulators. Phys Rev Lett 122(1):014302

    Article  Google Scholar 

  • Dong H-W, Su X-X, Wang Y-S, Zhang C (2014) Topological optimization of two-dimensional phononic crystals based on the finite element method and genetic algorithm. Struct Multidisc Optim 50(4):593–604

    Article  MathSciNet  Google Scholar 

  • Dong H-W, Zhao S-D, Zhu R, Wang Y-S, Cheng L, Zhang C (2020) Customizing acoustic Dirac cones and topological insulators in square lattices by topology optimization. J Sound Vib 493:115687

    Article  Google Scholar 

  • Du Z, Chen H, Huang G (2020) Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. J Mech Phys Solids 135:103784

    Article  MathSciNet  Google Scholar 

  • Dühring MB, Jensen JS, Sigmund O (2008) Acoustic design by topology optimization. J Sound Vib 317(3–5):557–575

    Article  Google Scholar 

  • Fang C, Gilbert MJ, Bernevig BA (2012) Bulk topological invariants in noninteracting point group symmetric insulators. Phys Rev B 86(11):115112

    Article  Google Scholar 

  • Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of phononic bandgap structures. Int J Solids Struct 43(18):5851–5866

    Article  MATH  Google Scholar 

  • Ge H, Yang M, Ma C, Lu M-H, Chen Y-F, Fang N, Sheng P (2017) Breaking the barriers: advances in acoustic functional materials. Natl Sci Rev 5(2):159–182

    Article  Google Scholar 

  • He C, Ni X, Ge H, Sun X-C, Chen Y-B, Lu M-H, Liu X-P, Chen Y-F (2016) Acoustic topological insulator and robust one-way sound transport. Nat Phys 12(12):1124

    Article  Google Scholar 

  • Kittel C (2011) Introduction to solid state physics. Am J Phys 61(1):59

    Google Scholar 

  • Langbehn J, Peng Y, Trifunovic L, von Oppen F, Brouwer PW (2017) Reflection-symmetric second-order topological insulators and superconductors. Phys Rev Lett 119(24):246401

    Article  Google Scholar 

  • Laude V (2015) Phononic crystals: artificial crystals for sonic, acoustic, and elastic waves. Walter de Gruyter GmbH & Co KG, Berlin

    Book  MATH  Google Scholar 

  • Li YF, Huang X, Meng F, Zhou S (2016) Evolutionary topological design for phononic band gap crystals. Struct Multidisc Optim 54:1–23

    Article  MathSciNet  Google Scholar 

  • Liu ZF, Wu B, He CF (2014) Band-gap optimization of two-dimensional phononic crystals based on genetic algorithm and FPWE. Waves Random Complex Media 24(3):286–305

    Article  MathSciNet  Google Scholar 

  • Lu J, Qiu C, Ye L, Fan X, Ke M, Zhang F, Liu Z (2017) Observation of topological valley transport of sound in sonic crystals. Nat Phys 13(4):369

    Article  Google Scholar 

  • Luo J, Du Z, Liu C, Mei Y, Zhang W, Guo X (2021) Moving morphable components-based inverse design formulation for quantum valley/spin hall insulators. Extrem Mech Lett 45:101276

    Article  Google Scholar 

  • Ma G, Sheng P (2016) Acoustic metamaterials: from local resonances to broad horizons. Sci Adv 2(2):e1501595

    Article  Google Scholar 

  • Ma G, Xiao M, Chan CT (2019) Topological phases in acoustic and mechanical systems. Nat Rev Phys 1(4):281–294

    Article  Google Scholar 

  • Meng F, Huang X, Jia B (2015) Bi-directional evolutionary optimization for photonic band gap structures. J Comput Phys 302:393–404

    Article  MathSciNet  MATH  Google Scholar 

  • Moradi P, Gharibi H, Fard AM, Mehaney A (2021) Four-channel ultrasonic demultiplexer based on two-dimensional phononic crystal towards high efficient liquid sensor. Phys Scr 96:125713

    Article  Google Scholar 

  • Nanthakumar S, Zhuang X, Park HS, Nguyen C, Chen Y, Rabczuk T (2019) Inverse design of quantum spin hall-based phononic topological insulators. J Mech Phys Solids 125:550–571

    Article  MathSciNet  MATH  Google Scholar 

  • Park JH, Ma PS, Kim YY (2015) Design of phononic crystals for self-collimation of elastic waves using topology optimization method. Struct Multidisc Optim 51(6):1199–1209

    Article  MathSciNet  Google Scholar 

  • Peng Y-G, Qin C-Z, Zhao D-G, Shen Y-X, Xu X-Y, Bao M, Jia H, Zhu X-F (2016) Experimental demonstration of anomalous Floquet topological insulator for sound. Nat Commun 7:13368

    Article  Google Scholar 

  • Rong J, Ye W (2019) Topology optimization design scheme for broadband non-resonant hyperbolic elastic metamaterials. Comput Methods Appl Mech Eng 344:819–836

    Article  MathSciNet  MATH  Google Scholar 

  • Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures for surface wave devices using topology optimization. Struct Multidisc Optim 34(2):111–121

    Article  MathSciNet  MATH  Google Scholar 

  • Sánchez-Dehesa J, Garcia-Chocano VM, Torrent D, Cervera F, Cabrera S, Simon F (2011) Noise control by sonic crystal barriers made of recycled materials. J Acoust Soc Am 129(3):1173–1183

    Article  Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigalas M (1998) Defect states of acoustic waves in a two-dimensional lattice of solid cylinders. J Appl Phys 84(6):3026–3030

    Article  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band–gap materials and structures by topology optimization. Philos Trans R Soc Lond 361(1806):1001–1019

    Article  MathSciNet  MATH  Google Scholar 

  • Song Z, Fang Z, Fang C (2017) (d−2)-dimensional edge states of rotation symmetry protected topological states. Phys Rev Lett 119(24):246402

    Article  Google Scholar 

  • Wang H-X, Guo G-Y, Jiang J-H (2019) Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology. New J Phys 21(9):093029

    Article  MathSciNet  Google Scholar 

  • Wiltshaw R, Craster RV, Makwana MP (2020) Asymptotic approximations for bloch waves and topological mode steering in a planar array of neumann scatterers. Wave Motion 99:102662

    Article  MathSciNet  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Xie B, Wang H-X, Zhang X, Zhan P, Jiang J-H, Lu M, Chen Y (2021) Higher-order band topology. Nat Rev Phys 3:1–13

    Article  Google Scholar 

  • Xue H, Yang Y, Gao F, Chong Y, Zhang B (2019) Acoustic higher-order topological insulator on a kagome lattice. Nat Mater 18(2):108–112

    Article  Google Scholar 

  • Yang XY, Xie YM, Steven G, Querin O (1999) Bidirectional evolutionary method for stiffness optimization. AIAA J 37(11):1483–1488

    Article  Google Scholar 

  • Yi GL, Youn BD (2016) A comprehensive survey on topology optimization of phononic crystals. Struct Multidisc Optim 54(5):1315–1344

    Article  MathSciNet  Google Scholar 

  • Yi G, Shin YC, Yoon H, Jo S-H, Youn BD (2019) Topology optimization for phononic band gap maximization considering a target driving frequency. JMST Adv 1(1):153–159

    Article  Google Scholar 

  • Zhang X, Xiao M, Cheng Y, Lu M-H, Christensen J (2018a) Topological sound. Commun Phys 1(1):97

    Article  Google Scholar 

  • Zhang Z, Tian Y, Cheng Y, Wei Q, Liu X, Christensen J (2018b) Topological acoustic delay line. Phys Rev Appl 9(3):034032

    Article  Google Scholar 

  • Zhang X, Wang H-X, Lin Z-K, Tian Y, Xie B, Lu M-H, Chen Y-F, Jiang J-H (2019a) Second-order topology and multidimensional topological transitions in sonic crystals. Nat Phys 15(6):582–588

    Article  Google Scholar 

  • Zhang X, Xie B-Y, Wang H-F, Xu X, Tian Y, Jiang J-H, Lu M-H, Chen Y-F (2019b) Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat Commun 10(1):1–10

    Google Scholar 

  • Zhang X, Takezawa A, Kang Z (2019c) A phase-field based robust topology optimization method for phononic crystals design considering uncertain diffuse regions. Comput Mater Sci 160:159–172

    Article  Google Scholar 

  • Zhang Z, Hu B, Liu F, Cheng Y, Liu X, Christensen J (2020) Pseudospin induced topological corner state at intersecting sonic lattices. Phys Rev B 101(22):220102

    Article  Google Scholar 

  • Zhang X, Liu L, Lu M-H, Chen Y-F (2021a) Valley-selective topological corner states in sonic crystals. Phys Rev Lett 126(15):156401

    Article  Google Scholar 

  • Zhang X, Xing J, Liu P, Luo Y, Kang Z (2021b) Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials. Extrem Mech Lett 42:101126

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 1210020421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafeng Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

The necessary information for a replication of the results are presented in the manuscript. Interested readers may contact the corresponding author for further details regarding the implementation.

Additional information

Responsible Editor: Emilio Carlos Nelli Silva

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y. On the use of topology optimized band gap structures for the realization of second-order acoustic topological insulators with valley-selective corner states. Struct Multidisc Optim 65, 115 (2022). https://doi.org/10.1007/s00158-022-03206-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-022-03206-z

Keywords

Navigation