Skip to main content
Log in

An evaluation of constraint aggregation strategies for wing box mass minimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Constraint aggregation makes it feasible to solve large-scale stress-constrained mass minimization problems efficiently using gradient-based optimization where the gradients are computed using adjoint methods. However, it is not always clear which constraint aggregation method is more effective, and which values to use for the aggregation parameters. In this work, the accuracy and efficiency of several aggregation methods are compared for an aircraft wing design problem. The effect of the type of aggregation function, the number of constraints, and the value of the aggregation parameter are studied. Recommendations are provided for selecting a constraint aggregation scheme that balances computational effort with the accuracy of the computed optimal design. Using the recommended aggregation method and associated parameters, a mass of within 0.5 % of the true optimal design was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Akgün M A, Haftka R T, Wu K C, Walsh J L, Garcelon J H (2001) Efficient Structural Optimization for Multiple Load Cases Using Adjoint Sensitivities. AIAA J 39(3):511–516. doi:10.2514/2.1336

    Article  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, vol 1

  • Gill P E, Murray W, Saunders M A (2002) SNOPT: An SQP algorithm for large-scale constrained optimization. SIAM J Optim 12(4):979–1006

    Article  MathSciNet  MATH  Google Scholar 

  • Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48:33–47. doi:10.1007/s00158-012-0880-7

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy G J (2015) Strategies for adaptive optimization with aggregation constraints using interior-point methods. Comput Struct 153:217–229. doi:10.1016/j.compstruc.2015.02.024

    Article  Google Scholar 

  • Kennedy G J, Hicken J E (2015) Improved constraint-aggregation methods. Comput Methods Appl Mech Eng 289:332–354. doi:10.1016/j.cma.2015.02.017

    Article  MathSciNet  Google Scholar 

  • Kennedy G J, Martins J R R A (2014a) A parallel finite-element framework for large-scale gradient-based design optimization of high-performance structures. Finite Elements in Analysis and Design 87:56–73. doi:10.1016/j.finel.2014.04.011

  • Kennedy GJ, Martins JRRA (2014b) A parallel aerostructural optimization framework for aircraft design studies. Struct Multidiscip Optim 50(6):1079–1101. doi:10.1007/s00158-014-1108-9

  • Kenway G K W, Martins J R R A (2014) Multipoint high-fidelity aerostructural optimization of a transport aircraft configuration. J Aircr 51(1):144–160. doi:10.2514/1.C032150

    Article  Google Scholar 

  • Kenway G K W, Kennedy G J, Martins J R R A (2010) A CAD-Free Approach to High-Fidelity Aerostructural Optimization. In: 13th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Fort Worth,TX. doi:10.2514/6.2010-9231

  • Kenway G K W, Kennedy G J, Martins J R R A (2014a) Aerostructural optimization of the Common Research Model configuration. In: 15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. doi:10.2514/6.2014-3274, Atlanta

  • Kenway G K W, Kennedy G J, Martins J R R A (2014b) Scalable parallel approach for high-fidelity steady-state aeroelastic analysis and adjoint derivative computations. AIAA J 52(5):935–951. doi:10.2514/1.J052255

  • Kreisselmeier G, Steinhauser R (1979) Systematic Control Design by Optimizing a Vector Performance Indicator. In: Symposium on Computer-Aided Design of Control Systems, IFAC, Zurich, Switzerland, pp 113-117

  • Kreisselmeier G, Steinhauser R (1983) Application of Vector Performance Optimization to a Robust Control Loop Design for a Fighter Aircraft. Int J Control 37(2):251–284. doi:10.1080/00207179.1983.9753066 10.1080/00207179.1983.9753066

    Article  MATH  Google Scholar 

  • Lambe AB, Martins JRRA (2016) Matrix-free aerostructural optimization of aircraft wings. Struct Multidiscip Optim 53(3):589–603

    Article  MathSciNet  Google Scholar 

  • Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Structural and Multidisciplinary Optimization 41(4):605–620. doi:10.1007/s00158-009-0440-y

    Article  Google Scholar 

  • Lyu Z, Kenway G K W, Martins J R R A (2014) Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark. AIAA J 53(4):968–985. doi:10.2514/6.2014-0567 10.2514/6.2014-0567

    Article  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39:419–437. doi:10.1007/s00158-008-0336-2 10.1007/s00158-008-0336-2

    Article  MathSciNet  MATH  Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41:433–441. doi:10.1016/j.advengsoft.2009.03.006 10.1016/j.advengsoft.2009.03.006

    Article  MATH  Google Scholar 

  • Perez RE, Jansen PW, Martins JRRA (2012) pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization. Struct Multidiscip Optim 45(1):101–118. doi:10.1007/s00158-011-0666-3

    Article  MathSciNet  MATH  Google Scholar 

  • Poon NMK, Martins JRRA (2007) An adaptive approach to constraint aggregation using adjoint sensitivity analysis. Struct Multidiscip Optim 34:61–73. doi:10.1007/s00158-006-0061-7

    Article  Google Scholar 

  • Qiu GY, Li XS (2010) A note on the derivation of global stress constraints. Struct Multidiscip Optim 40:625–628. doi:10.1007/s00158-009-0397-x

    Article  MathSciNet  MATH  Google Scholar 

  • Raspanti CG, Bandoni JA, Biegler LT (2000) New strategies for flexibility analysis and design under uncertainty. Comput Chem Eng 24:2193–2209. doi:10.1016/S0098-1354(00)00591-3

    Article  Google Scholar 

  • Vassberg J C, DeHaan M A, Rivers S M, Wahls R A (2008) Development of a Common Research Model for applied CFD validation studies. AIAA:2008–6919

  • van der Weide E, Kalitzin G, Schluter J, Alonso J (2006) Unsteady Turbomachinery Computations Using Massively Parallel Platforms. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics. doi:10.2514/6.2006-421

  • Wrenn G A (1989) An Indirect Method for Numerical Optimization Using the Kreisselmeier–Steinhauser Function. Tech. rep. NASA Langley Research Center, Hampton, VA

Download references

Acknowledgments

The authors would like to thank Gaetan K. W. Kenway for his assistance in setting up the CRM wing geometry used in this paper. Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Lambe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambe, A.B., Kennedy, G.J. & Martins, J.R.R.A. An evaluation of constraint aggregation strategies for wing box mass minimization. Struct Multidisc Optim 55, 257–277 (2017). https://doi.org/10.1007/s00158-016-1495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1495-1

Keywords

Navigation