Skip to main content
Log in

Matrix-free aerostructural optimization of aircraft wings

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In structural optimization subject to failure constraints, computing the gradients of a large number of functions with respect to a large number of design variables may not be computationally practical. Often, the number of constraints in these optimization problems is reduced using constraint aggregation at the expense of a higher mass of the optimal structural design. This work presents results of structural and coupled aerodynamic and structural design optimization of aircraft wings using a novel matrix-free augmented Lagrangian optimizer. By using a matrix-free optimizer, the computation of the full constraint Jacobian at each iteration is replaced by the computation of a small number of Jacobian-vector products. The low cost of the Jacobian-vector products allows optimization problems with thousands of failure constraints to be solved directly, mitigating the effects of constraint aggregation. The results indicate that the matrix-free optimizer reduces the computational work of solving the optimization problem by an order of magnitude compared to a traditional sequential quadratic programming optimizer. Furthermore, the use of a matrix-free optimizer makes the solution of large multidisciplinary design problems, in which gradient information must be obtained through iterative methods, computationally tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Acknowledgments

Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation under the auspices of Compute Canada; the Government of Ontario; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Lambe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambe, A.B., Martins, J.R.R.A. Matrix-free aerostructural optimization of aircraft wings. Struct Multidisc Optim 53, 589–603 (2016). https://doi.org/10.1007/s00158-015-1349-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1349-2

Keywords

Navigation