Skip to main content
Log in

Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the present work, some symmetry theorems for structural optimization problems involving reliability measure and bi-modulus materials are established. In the first part of this paper, two types of symmetric reliability-based structural optimization problems are discussed. It is proved that, for the first type symmetric RBDO problems, the existence of symmetric global optimal solutions can be guaranteed even through the probability density function (PDF) is non-symmetric. While for the second type symmetric RBDO problems, more severe conditions on PDF are required to ensure the existence of symmetric global optimal solutions. In the second part of the paper, the convexity of the compliance of truss structures involving bi-modulus materials is confirmed firstly. Based on this result, it is found that for both deterministic and robust symmetric compliance minimization of truss structures involving bi-modulus materials, symmetric global optima always exist. The theoretical results are also demonstrated through some academic examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Armstrong MA (1988) Groups and symmetry. Springer

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

  • Cheng GD, Liu XF (2011) Discussion on symmetry of optimum topology design. Struct Multidiscip Optim 44:713–717

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng GD, Xu L, Jiang L (2006) A sequential approximate programming strategy for reliability-based structural optimization. Comput Struct 84:1353–1367

    Article  Google Scholar 

  • Ching J, Hsu WC (2008) Transforming reliability limit-state constraints into deterministic limit-state constraints. Struct Saf 30:11–33

    Article  Google Scholar 

  • Du ZL, Guo X (2014) Variational principles and the related bounding theorems for bi-modulus materials. J Mech Phys Solids 73:183–211

    Article  MathSciNet  Google Scholar 

  • Frangopol DM, Maute K (2003) Life-cycle reliability-based optimization of civil and aerospace structures. Comput Struct 81:397–410

    Article  Google Scholar 

  • Guo X, Ni CH, Cheng GD, Du ZL (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidiscip Optim 46:631–645

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Du ZL, Cheng GD, Ni CH (2013) Symmetry properties in structural optimization: some extensions. Struct Multidiscip Optim 47:783–794

    Article  MATH  Google Scholar 

  • Guo X, Du ZL, Cheng GD (2014) A confirmation of a conjecture on the existence of symmetric optimal solution under multiple loads. Struct Multidiscip Optim 50:659–661

    Article  MathSciNet  Google Scholar 

  • Kanno Y, Ohsaki M, Katoh N (2002) Symmetricity of the solution of semi-definite programming. Struct Multidiscip Optim 24:225–232

    Article  Google Scholar 

  • Nikolaidis E, Burdisso R (1988) Reliability based optimization: a safety index approach. Comput Struct 28:781–788

    Article  MATH  Google Scholar 

  • Richardson JN, Adriaenssens S, Bouillard P, Coelho RF (2013) Symmetry and asymmetry of solutions in discrete variable structural optimization. Struct Multidiscip Optim 47:631–643

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN (2011) On symmetry and non-uniqueness in exact topology optimization. Struct Multidiscip Optim 43:297–317

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN, Maute K (2011) Analytical and numerical solutions for a reliability-based benchmark example. Struct Multidiscip Optim 43:745–753

    Article  MATH  Google Scholar 

  • Rozvany GIN, Pomezanski V, Sokol T (2014) Exact compliance-based multi-load truss topology optimization revisited – also background material for an authors’ reply to a discussion by logo. Struct Multidiscip Optim 50:193–205

    Article  MathSciNet  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidiscip Optim 41:661–670

    Article  MATH  Google Scholar 

  • Svanberg K (1994) On the convexity and concavity of compliances. Struct Optim 7:42–46

    Article  Google Scholar 

  • Tu J, Choi KK, Park YH (1999) A new study on reliability-based design optimization. J Mech Des ASME 121:557–564

    Article  Google Scholar 

  • Watada R, Ohsaki M, Kanno Y (2011) Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance. Struct Multidiscip Optim 43:459–471

    Article  MATH  Google Scholar 

  • Yang RJ, Gu L (2004) Experience with approximate reliability-based optimization methods. Struct Multidiscip Optim 26:152–159

    Article  Google Scholar 

  • Youn BD, Choi KK, Park YH (2003) Hybrid analysis method for reliability-based design optimization. J Mech Des ASME 125:221–232

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports from the National Natural Science Foundation (10925209, 91216201 and 11372004), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) and 111 Project (B14013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guo.

Appendix A

Appendix A

In this appendix, we shall prove the fact that

$$ \left({\mathbf{\mathcal{R}}}^i{\boldsymbol{u}}^{*},{\mathbf{\mathcal{R}}}^i{\boldsymbol{z}}^{*}\right)\in \mathrm{A}\mathrm{r}\mathrm{g}\kern0.5em { \max}_{{\mathcal{U}}^{ad}\times {\mathcal{Z}}^{ad}}\left(-2\Pi \left(\boldsymbol{u},\boldsymbol{z};{\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right)\right). $$

The augmented Lagrangian function of the optimization in (38) is

$$ L\left(\boldsymbol{u},\boldsymbol{z},\boldsymbol{\lambda}; \boldsymbol{A}\right)=-{\boldsymbol{u}}^{\top }{\mathbf{K}}_{\mathbf{uu}}^{+}\left(\boldsymbol{A}\right)\boldsymbol{u}+2{\boldsymbol{u}}^{\top }{\mathbf{K}}_{\mathbf{uz}}\left(\boldsymbol{A}\right)\boldsymbol{z}-{\boldsymbol{z}}^{\top }{\mathbf{K}}_{\mathbf{zz}}\left(\boldsymbol{A}\right)\boldsymbol{z}+2{\boldsymbol{f}}^{\top}\boldsymbol{u}+{\boldsymbol{\lambda}}^{\top}\boldsymbol{z}, $$

Where λ ∈ Λ and Λ = {(λ 1, …, λ n )|λ i  ≥ 0, i = 1, …, n}.

Accordingly, the Karush-Kuhn-Tucker (K-K-T) conditions of \( \underset{{\mathcal{U}}^{ad}\times {\mathcal{Z}}^{ad}}{ \max}\left(-2\Pi \left(\boldsymbol{u},\boldsymbol{z};\boldsymbol{A}\right)\right) \) can be written as:

$$ \left\{\begin{array}{c}\hfill {\mathbf{K}}_{\mathbf{uu}}^{+}\left(\boldsymbol{A}\right){\boldsymbol{u}}^{*}-{\mathbf{K}}_{\mathbf{uz}}\left(\boldsymbol{A}\right){\boldsymbol{z}}^{*}-\boldsymbol{f}=\mathbf{0},\hfill \\ {}\hfill {\mathbf{K}}_{\mathbf{zz}}\left(\boldsymbol{A}\right){\boldsymbol{z}}^{*}-{\mathbf{K}}_{\mathbf{uz}}^{\top}\left(\boldsymbol{A}\right){\boldsymbol{u}}^{*}+{\boldsymbol{\lambda}}^{*}=\mathbf{0},\hfill \\ {}\hfill \kern0.75em {\lambda}_i^{*}{z}_i^{*}=0,{\lambda}_i^{*}\ge 0,{z}_i^{*}\le 0,i=1,..,n.\hfill \end{array}\right. $$
(51)

On the other hand, the K-K-T conditions of the optimization problem \( \underset{{\mathcal{U}}^{ad}\times {\mathcal{Z}}^{ad}}{ \max}\Pi \left(\boldsymbol{u},\boldsymbol{z};{\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right) \) are:

$$ \left\{\begin{array}{c}\hfill {\mathbf{K}}_{\mathbf{uu}}^{+}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right){\boldsymbol{u}}_R^{*}-{\mathbf{K}}_{\mathbf{uz}}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right){\boldsymbol{z}}_R^{*}-\boldsymbol{f}=\mathbf{0},\hfill \\ {}\hfill {\mathbf{K}}_{\mathbf{zz}}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right){\boldsymbol{z}}_R^{*}-{\mathbf{K}}_{\mathbf{uz}}^{\top}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right){\boldsymbol{u}}_R^{*}+{\boldsymbol{\lambda}}_R^{*}=\mathbf{0},\hfill \\ {}\hfill {\left({\lambda}_R^{*}\right)}_i{\left({z}_R^{*}\right)}_i=0,{\left({\lambda}_R^{*}\right)}_i\ge 0,{\left({z}_R^{*}\right)}_i\le 0,i=1,..,n.\hfill \end{array}\right. $$
(52)

Then with use of the following relations

$$ \left\{\kern0.75em \begin{array}{c}\hfill {\mathbf{K}}_{\mathbf{u}\mathbf{u}}^{+}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right)={\mathbf{R}}_{\mathbf{u}}^{\top }{\mathbf{K}}_{\mathbf{u}\mathbf{u}}^{+}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{u}},\hfill \\ {}\hfill {\mathbf{K}}_{\mathbf{u}\mathbf{z}}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right)={\mathbf{R}}_{\mathbf{u}}^{\top }{\mathbf{K}}_{\mathbf{u}\mathbf{z}}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{z}},\hfill \\ {}\hfill {\mathbf{K}}_{\mathbf{z}\mathbf{z}}\left({\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right)={\mathbf{R}}_{\mathbf{z}}^{\mathbf{\top}}{\mathbf{K}}_{\mathbf{z}\mathbf{z}}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{z}},\hfill \end{array}\right. $$
(53)

(52) can be simplified as:

$$ \left\{\begin{array}{c}\hfill {\mathbf{R}}_{\mathbf{u}}^{\top }{\mathbf{K}}_{\mathbf{u}\mathbf{u}}^{+}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{u}}{\boldsymbol{u}}_R^{*}-{\mathbf{R}}_{\mathbf{u}}^{\top }{\mathbf{K}}_{\mathbf{u}\mathbf{z}}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{z}}{\boldsymbol{z}}_R^{*}-\boldsymbol{f}=\mathbf{0},\hfill \\ {}\hfill {\mathbf{R}}_{\mathbf{z}}^{\mathbf{\top}}{\mathbf{K}}_{\mathbf{z}\mathbf{z}}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{z}}{\boldsymbol{z}}_R^{*}-{\mathbf{R}}_{\mathbf{z}}^{\top }{\mathbf{K}}_{\mathbf{u}\mathbf{z}}\left(\boldsymbol{A}\right){\mathbf{R}}_{\mathbf{u}}{\boldsymbol{u}}_R^{*}+{\boldsymbol{\lambda}}_R^{*}=\mathbf{0},\hfill \\ {}\hfill {\left({\lambda}_R^{*}\right)}_i{\left({z}_R^{*}\right)}_i=0,{\left({\lambda}_R^{*}\right)}_i\ge 0,{\left({z}_R^{*}\right)}_i\le 0,i=1,..,n.\hfill \end{array}\right. $$
(54)

Since the external force is symmetric, i.e., f = R u f, it can be verified immediately that the \( {\boldsymbol{u}}_R^{*}={\mathbf{R}}_{\mathbf{u}}^{\top }{\boldsymbol{u}}^{*}\in {\mathcal{U}}^{ad},\ {\boldsymbol{z}}_R^{*}={\mathbf{R}}_{\mathbf{z}}^{\top }{\boldsymbol{z}}^{*}\in {\mathcal{Z}}^{ad} \) and λ * R  = R z λ* ∈ Λ do satisfy (54) by taking (52) into consideration. Finally, since \( \Pi \left(\boldsymbol{u},\boldsymbol{z};{\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right) \) is strictly convex in u and z jointly, then it can be concluded that \( \left({\mathbf{\mathcal{R}}}^i{\boldsymbol{u}}^{*},{\mathbf{\mathcal{R}}}^i{\boldsymbol{z}}^{*}\right)\in \mathrm{A}\mathrm{r}\mathrm{g}{ \max}_{{\mathcal{U}}^{ad}\times {\mathcal{Z}}^{ad}}\left(-2\Pi \left(\boldsymbol{u},\boldsymbol{z};{\mathbf{\mathcal{R}}}^i\boldsymbol{A}\right)\right) \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Guo, X. Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials. Struct Multidisc Optim 53, 973–984 (2016). https://doi.org/10.1007/s00158-015-1327-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-015-1327-8

Keywords

Navigation