Skip to main content
Log in

Symmetry properties in structural optimization: some extensions

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the present paper, some extensions of the previous theoretical results about the symmetry properties of structural optimization problems are reported. It is found that generally the condition of convexity can be relaxed to quasi-convexity in order to guarantee the existence of symmetry global optima. Furthermore, some new results about the symmetry properties of robust and discrete structural optimization problems are also presented. Numerous concrete examples illustrate the claims made in the present work explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press

  • Cheng GD, Liu XF (2011) Discussion on symmetry of optimum topology design. Struct Multidisc Optim 44:713–717

    Article  MathSciNet  Google Scholar 

  • Guo X, Bai W, Zhang WS, Gao XX (2009) Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Methods Appl Mech Eng 198:3378–3399

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Ni CH, Cheng GD, Du ZL (2012) Some symmetry results for optimal solutions in structural optimization. Struct Multidisc Optim 46:631–645

    MathSciNet  Google Scholar 

  • Guo X, Zhang WS, Zhang L (2013) Robust structural topology optimization considering boundary uncertainties. Comput Methods Appl Mech Eng 253:356–368

    Article  Google Scholar 

  • Healey TJ (1989) Symmetry and equivalence in nonlinear elastostatics part I. Arch Ration Mech Anal 105:205–228

    Article  MathSciNet  Google Scholar 

  • Kang JS, Suh MH, Lee TY (2004) Robust economic optimization of process design under uncertainty. Eng Optim 36:51–75

    Article  MathSciNet  Google Scholar 

  • Kangwai RD, Guest SD, Pellegrino S (1999) An introduction to the analysis of symmetric structures. Comput Struct 71:671–688

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (2011a) On symmetry and non-uniqueness in exact topology optimization. Struct Multidisc Optim 43:297–317

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN (2011b) Author’s reply to a discussion by Gengdong Cheng and Xiaofeng Liu of the review article “On symmetry and non-uniqueness in exact topology optimization” by George I.N. Rozvany (2011, Struct Multidisc Optim 43:297–317). Struct Multidisc Optim 44:719–721

    Article  MathSciNet  Google Scholar 

  • Sandgren E, Cameron TM (2002) Robust design optimization of structures through consideration of variation. Comput Struct 80:1605–1613

    Article  Google Scholar 

  • Seepersad CC, Allen JK, McDowell DL, Mistree F (2006) Robust design of cellular materials with topological and dimensional imperfections. J Mech Des Trans ASME 128:1285–1297

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25:227–239

    Article  Google Scholar 

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidisc Optim 41:661–670

    Article  Google Scholar 

  • Stolpe M, Svanberg K (2001) On trajectories of penalization for topology optimization. Struct Multidisc Optim 21:128–139

    Article  Google Scholar 

  • Takezawa A, Nii S, Kitamura M, Kogiso N (2011) Topology optimization for worst load conditions based on the eigenvalue analysis of an aggregated linear system. Comput Methods Appl Mech Eng 200:2268–2281

    Article  MathSciNet  MATH  Google Scholar 

  • Watada R, Ohsaki M, Kanno Y (2011) Non-uniqueness and symmetry of optimal topology of a shell for minimum compliance. Struct Multidisc Optim 43:459–471

    Article  Google Scholar 

  • Zingoni A (2009) Group-theoretic exploitation of symmetry in computational solid and structural mechanics. Int J Numer Methods Eng 79:253–289

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation (10925209, 90816025, 10932003 and 91216201), 973 Project of China (2010CB832703), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) and the Fundamental Research Funds for the Central Universities (DUT11ZD104) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Guo or Gengdong Cheng.

Appendix A

Appendix A

In this appendix, we shall show that \(\omega _1^2 ({\boldsymbol {A};\boldsymbol {k}})\) in (24) is a quasi-concave function of A.

Proof

It is sufficient to show that the superlevel set of \(\omega _1^2 ({\boldsymbol {A};\boldsymbol {k}})\), that is \(L_{\beta } =\left \{ {\left . \boldsymbol {A} \right |\omega _1^2 ({\boldsymbol {A};\boldsymbol {k}})\ge \beta } \right \}\) is a convex set for every \(\beta \ge 0\). Due to (24), it yields that,

$$\begin{array}{l} \omega_1^2 ({\boldsymbol{A};\boldsymbol{k}}) \ge \beta \Leftrightarrow \dfrac{\boldsymbol{u}^{\top} \left({{\textbf{K}}(\boldsymbol{A})+ \sum\nolimits_{i=1}^{\textrm{nbs}} k_i {\textbf{K}}_i^{\textrm{bs}}} \right)\boldsymbol{u}}{\boldsymbol{u}^{\top} \left( {{\textbf{M}}(\boldsymbol{A})+{\textbf{M}}_0} \right)\boldsymbol{u}}\ge \beta ,\\ \forall \,\boldsymbol{u}\in \textrm{U}_{{\textrm ad}} ,\quad \boldsymbol{u}\ne {{\textbf 0}} \end{array}$$
(A.1)

and \(L_{\beta } \) can be expressed as

$$ {\begin{array}{*{20}c} {L_{\beta} =\left\{ {\boldsymbol{A}\left| {\dfrac{\boldsymbol{u}^{\top} \left( {{\textbf{K}}\left( \boldsymbol{A} \right)+\sum\nolimits_{i=1}^{\textrm{nbs}} k_i {{\textbf K}}_i^{\textrm{bs}}} \right)\boldsymbol{u}}{\boldsymbol{u}^{\top} \left( {{\textbf{M}}\left( \boldsymbol{A} \right)+{\textbf{M}}_0} \right)\boldsymbol{u}}\ge \beta ,\forall \,\boldsymbol{u}\in \textrm{U}_{\textrm{ad}}} \right.} \right\}} \\ \\ = \displaystyle\bigcap\limits_{\boldsymbol{u} \in U_{\textrm ad}}\left\{\boldsymbol{A}\left|\dfrac{\boldsymbol{u}^{\top}({\textbf K}(\boldsymbol{A})+ \sum_{i=1}^{\textrm nbs}k_i {\textbf K}_i^{\textrm bs})\boldsymbol{u}}{\boldsymbol{u}^{\top}({\textbf M}(\boldsymbol{A})+ {\textbf M}_0)\boldsymbol{u}}\right.\geq \beta\right\} \end{array}} $$
(A.2)

For every fixed \(\boldsymbol {u}^{\ast } \ne {{\textbf 0}}\in \textrm {U}_{\textrm {ad}} \),

$$ \frac{( {\boldsymbol{u}^{\ast}} )^{\top} ( {{\textbf{K}}(\boldsymbol{A})+ \sum\nolimits_{i=1}^{\textrm{nbs}} k_i {{\textbf K}}_i^{\textrm{bs}}})\boldsymbol{u}^{\ast}} {( {\boldsymbol{u}^{\ast}} )^{\top} ({{\textbf{M}}( \boldsymbol{A} )+{\textbf{M}}_0})\boldsymbol{u}^{\ast}} \ge \beta $$
(A.3)

implies (note that \({\textbf {M}}( \boldsymbol {A} )\succ 0\), \({\textbf {M}}_0 \succcurlyeq 0\), respectively)

$$ ( {\boldsymbol{u}^{\ast}} )^{\top} {\textbf{K}}( \boldsymbol{A} )\boldsymbol{u}^{\ast} \ge \beta ( {\boldsymbol{u}^{\ast}} )^{\top} {\textbf{M}}( \boldsymbol{A} )\boldsymbol{u}^{\ast} +t^{\ast} , $$
(A.4)

where

$$ t^{\ast} =\beta ( {\boldsymbol{u}^{\ast}} )^{\top} \left( {{\textbf{M}}_0 -\sum\nolimits_{i=1}^{\textrm{nbs}} {k_i {\textbf{K}}_i^{\textrm{bs}}} } \right)\boldsymbol{u}^{\ast} $$
(A.5)

is a constant scalar if \(k_{i}\), \(i = 1\), …, nbs are fixed. If K(A) and M(A) are all linear functions of A, (A.4) in fact represents a half space, which is obvious a convex set. Since the intersection of an infinite number of convex sets is still a convex set, we have \(L_{\beta } \) is convex, which concludes the proof (Fig. 13). □

Fig. 13
figure 13

\(L_{\beta } \) is the intersection of an infinite number of half spaces

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Du, Z., Cheng, G. et al. Symmetry properties in structural optimization: some extensions. Struct Multidisc Optim 47, 783–794 (2013). https://doi.org/10.1007/s00158-012-0877-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-012-0877-2

Keywords

Navigation