Skip to main content
Log in

Zellfreie Biomaterialien zur Knorpelregeneration

Unterschiede und Vorteile diverser Materialien

Cell-free biomaterials for cartilage regeneration

Differences and advantages of various materials

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Biomaterialien gewinnen in der knorpelrekonstruktiven Chirurgie zunehmend an Bedeutung. Dabei sollen sie die Bildung einer funktionsfähigen Knorpelmatrix unterstützen, die in der Lage ist, mit den gesunden Umgebungsstrukturen im Defekt zu fusionieren und vergleichbare biomechanische Eigenschaften zum hyalinen Gelenkknorpel abzurufen. Derzeit werden verschiedene Trägermaterialien angeboten, die als mono-, bi- oder sogar triphasische Gerüststrukturen zur Behandlung von chondralen und osteochondralen Defekten in fester oder gelartiger Konsistenz zum Einsatz kommen. Die Implantation ist stets einzeitig möglich und meist in arthroskopischer oder offener Technik durchführbar. Die Evidenz vieler Implantate ist momentan noch relativ gering. Die beste Studienlage bietet momentan die biphasische Kollagenmembran, wobei sich die matrixaugmentierte Knochenmarkstimulation der Mikrofrakturierung überlegen gezeigt hat. Der vorliegende Artikel gibt einen Überblick über die häufigsten momentan verfügbaren Implantate. Darüber hinaus wird auch der aktuelle Stand der Literatur dargestellt.

Abstract

Biomaterials are becoming increasingly more important in reconstructive cartilage surgery. In this context, they should support the formation of a functional cartilage matrix, which is able to fuse with the healthy surrounding chondral structures of the defect and to recruit biomechanical properties comparable to hyaline articular cartilage. Various substrate materials are currently available that are used as monophasic, biphasic or even triphasic framework structures for the treatment of chondral and osteochondral defects with a solid or gel-like consistency. The implantation is invariably possible as a one-step procedure and mostly performed in an arthroscopic or open technique; however, at present the evidence for many implants is still relatively low. The best available evidence is currently from studies with the biphasic collagen membrane, whereby matrix-augmented bone marrow stimulation has proven to be superior to microfracturing. The present article provides a comprehensive overview of the most frequent currently available implants. Furthermore, the current state of the literature on this topic is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Benthien JP, Behrens P (2013) Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note. Int Orthop 37:2139–2145

    Article  Google Scholar 

  2. Boffa A, Solaro L, Poggi A et al (2021) Multi-layer cell-free scaffolds for osteochondral defects of the knee: a systematic review and meta-analysis of clinical evidence. J Exp Orthop 8:56

    Article  Google Scholar 

  3. Di Martino A, Perdisa F, Filardo G et al (2021) Cell-free biomimetic osteochondral scaffolds for the treatment of knee lesions: clinical and imaging results at 10-year follow-up. Am J Sports Med 49:2645–2650

    Article  Google Scholar 

  4. Fossum V, Hansen AK, Wilsgaard T et al (2019) Collagen-covered autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis: a randomized trial comparing 2 methods for repair of cartilage cefects of the knee. Orthop J Sports Med 7:2325967119868212

    Article  Google Scholar 

  5. Gavenis K, Schneider U, Maus U et al (2011) Cell-free repair of small cartilage defects in the Goettinger minipig: Which defect size is possible? Knee Surg Sports Traumatol Arthrosc 20:2307–2314

    Article  Google Scholar 

  6. Gille J, Kunow J, Boisch L et al (2010) Cell-laden and cell-free matrix-induced chondrogenesis versus microfracture for the treatment of articular cartilage cefects: a histological and biomechanical study in sheep. Cartilage 1:29–42

    Article  Google Scholar 

  7. Gille J, Reiss E, Freitag M et al (2021) Autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee: a follow-up study. Orthop J Sports Med 9:2325967120981872

    Article  Google Scholar 

  8. Glasbrenner J, Petersen W, Raschke MJ et al (2020) Matrix-augmented bone marrow stimulation with a polyglycolic acid membrane with hyaluronan vs microfracture in local cartilage defects of the femoral condyles: a multicenter randomized controlled trial. Orthop J Sports Med 8:2325967120922938

    Article  Google Scholar 

  9. Gobbi A, Chaurasia S, Karnatzikos G et al (2015) Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage 6:82–97

    Article  CAS  Google Scholar 

  10. Gobbi A, Scotti C, Karnatzikos G et al (2017) One-step surgery with multipotent stem cells and hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 25:2494–2501

    Article  Google Scholar 

  11. Hee CK, Jonikas MA, Nicoll SB (2006) Influence of three-dimensional scaffold on the expression of osteogenic differentiation markers by human dermal fibroblasts. Biomaterials 27:875–884

    Article  CAS  Google Scholar 

  12. Hoburg A, Leitsch JM, Diederichs G et al (2018) Treatment of osteochondral defects with a combination of bone grafting and AMIC technique. Arch Orthop Trauma Surg 138:1117–1126

    Article  Google Scholar 

  13. John R, Ma J, Wong I (2020) Better clinicoradiological results of BST-CarGel treatment in cartilage repair compared with microfracture in acetabular chondral defects at 2 years. Am J Sports Med 48:1961–1966

    Article  Google Scholar 

  14. Kon E, Di Matteo B, Verdonk P et al (2021) Aragonite-based scaffold for the treatment of joint surface lesions in mild to moderate osteoarthritic knees: results of a 2-year multicenter prospective study. Am J Sports Med 49:588–598

    Article  Google Scholar 

  15. Kon E, Filardo G, Brittberg M et al (2018) A multilayer biomaterial for osteochondrale regeneration shows superiority vs microfractures for the treatment of osteochondral lesions in a multicentre randomized trial at 2 years. Knee Surg Sports Traumatol Arthrosc 26:2704–2715

    Article  Google Scholar 

  16. Müller PE, Gallik D, Hammerschmid F et al (2020) Third-generation autologous chondrocyte implantation after failed bone marrow stimulation leads to inferior clinical results. Knee Surg Sports Traumatol Arthrosc 28:470–477

    Article  Google Scholar 

  17. Niemeyer P, Becher C, Brucker PU et al (2018) Significance of matrix-augmented bone marrow stimulation for treatment of cartilage defects of the knee: a consensus statement of the DGOU Working Group on Tissue Regeneration. Z Orthop Unfall 156:513–532

    PubMed  Google Scholar 

  18. Nurmukhametov M, Makarov M, Byalik E et al (2021) The use of autologous matrix-induced chondrogenesis as a surgical treatment for patients with the first metatarsophalangeal joint osteoarthritis: immediate and medium-term results. Cartilage 13:1354S–1365S

    Article  CAS  Google Scholar 

  19. Penalver JM, Villalba J, Yela-Verdu CP et al (2020) All-arthroscopic nanofractured autologous matrix-induced chondrogenesis technique for the treatment of focal chondral lesions of the knee. Arthrosc Tech 9:e755–e759

    Article  Google Scholar 

  20. Schneider U (2016) Controlled, randomized multicenter study to compare compatibility and safety of ChondrFiller liquid (cell free 2‑component collagen gel) with microfracturing of patients with focal cartilage defects of the knee joint. Video. J Orthop Surg 1:1–8

    Google Scholar 

  21. Schneider U, Schmidt-Rohlfing B, Gavenis K et al (2011) A comparative study of 3 different cartilage repair techniques. Knee Surg Sports Traumatol Arthrosc 19:2145–2152

    Article  Google Scholar 

  22. Schüttler KF, Götschenberg A, Klasan A et al (2019) Cell-free cartilage repair in large defects of the knee: increased failure rate 5 years after implantation of a collagen type I scaffold. Arch Orthop Trauma Surg 139:99–106

    Article  Google Scholar 

  23. Shive MS, Stanish WD, McCormack R et al (2015) BST-CarGel treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage 6:62–72

    Article  CAS  Google Scholar 

  24. Siclari A, Mascaro G, Kaps C, Boux E (2014) A 5‑year follow-up after cartilage repair in the knee using a platelet-rich plasma-immersed polymer-based implant. Open Orthop J 8:346–354

    Article  Google Scholar 

  25. Sofu H, Camurcu Y, Ucpunar H et al (2019) Clinical and radiographic outcomes of chitosan-glycerol phosphate/blood implant are similar with hyaluronic acid-based cell-free scaffold in the treatment of focal osteochondral lesions of the knee joint. Knee Surg Sports Traumatol Arthrosc 27:773–781

    Article  Google Scholar 

  26. Stanish WD, McCormack R, Forriol F et al (2013) Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am 95:1640–1650

    Article  Google Scholar 

  27. Steinwachs MR, Gille J, Volz M et al (2021) Systematic review and meta-analysis of the clinical evidence on the use of autologous matrix-induced chondrogenesis in the knee. Cartilage 13:42S–56S

    Article  CAS  Google Scholar 

  28. Tan SI, Tho SJW, Tho KS (2020) Biological resurfacing of grade IV articular cartilage ulcers in knee joint with Hyalofast. J Orthop Surg (Hong Kong) 28:2309499020905158

    Article  Google Scholar 

  29. Van Genechten W, Vuylsteke K, Struijk C et al (2021) Joint surface lesions in the knee treated with an acellular aragonite-based scaffold: a 3-year follow-up case series. Cartilage 13:1217S–1227S

    Article  Google Scholar 

  30. Volz M, Schaumburger J, Frick H et al (2017) A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced chondrogenesis over microfracture at five years. Int Orthop 41:797–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cornelius Kreuz.

Ethics declarations

Interessenkonflikt

P.C. Kreuz, J. Gille, J. Mehl und M. Mumme geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Madry, Homburg/Saar

P. Niemeyer, München

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kreuz, P.C., Gille, J., Mehl, J. et al. Zellfreie Biomaterialien zur Knorpelregeneration. Arthroskopie 35, 328–334 (2022). https://doi.org/10.1007/s00142-022-00559-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-022-00559-x

Schlüsselwörter

Keywords

Navigation