Skip to main content

Advertisement

Log in

Treatment of osteochondral defects with a combination of bone grafting and AMIC technique

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Osteochondral defects of the knee may cause functional impairment of young and sportively active patients. Different surgical treatment options have been proposed using either one or two step procedures. The aim of the current study was to evaluate mid-term outcomes of combined bone grafting with autologous matrix-associated chondrogenesis (AMIC) for the treatment of large osteochondral defects.

Materials and methods

15 Patients with osteochondrosis dissecans of the medial femoral condyle grade III or IV according to ICRS classification were treated with a single step surgical procedure combining bone grafting and the AMIC procedure. Mean defect size was 4.98 cm2 (± 3.02) and patients were examined at 6, 12 weeks, 6 and 12 month and at mean final follow-up of 49 months (36–61). Patients were evaluated using VAS, IKDC, KOOS, Lysholm, Tegner activity scores and psychological and physical health assessed using the SF 12. MRI evaluation was performed at final follow-up using the MOCART score.

Results

Pain had significantly decreased at final follow-up (7.2 ± 1.4 vs. 2.4 ± 2.6) compared to preoperative baseline. All functional scores had improved significantly throughout the follow-up period (IKDC from 36.6 ± 20.6 vs. 72.2 ± 18.7; KOOS 50.0 ± 18.9 vs. 81.7 ± 13.9; LYSHOLM 39.3 ± 19.5 vs. 79.8 ± 15.1). SF12 evaluation showed a significant increase in physical component summary (PCS) (31.2 ± 11.1 preoperative vs. 46.3 ± 9.9 at final follow-up), while mental component summary (MCS) remained stable (51.8 ± 8.9 vs. 57.3 ± 3.3). MOCART score revealed a mean overall score of 77 ± 15 at final follow-up. Integration to the adjacent cartilage was complete in 79%, incomplete in 21%. Defect filling was complete in 64%, incomplete in 36%.

Conclusion

Significant improvement of knee function and restoration of homogenous cartilage morphology could be achieved with simultaneous AMIC procedure and bone grafting in 2/3 of all patients with large osteochondral lesions at 4 years postoperatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Edmonds EW, Polousky J (2013) A review of knowledge in osteochondritis dissecans: 123 years of minimal evolution from Konig to the ROCK study group. Clin Orthop Relat Res 471(4):1118–1126. https://doi.org/10.1007/s11999-012-2290-y

    Article  PubMed  Google Scholar 

  2. Aichroth P (1971) Osteochondritis dissecans of the knee. A clinical survey. J Bone Joint Surg Br 53(3):440–447

    Article  CAS  Google Scholar 

  3. Hefti F, Beguiristain J, Krauspe R, Moller-Madsen B, Riccio V, Tschauner C, Wetzel R, Zeller R (1999) Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B 8(4):231–245

    CAS  PubMed  Google Scholar 

  4. Din R, Annear P, Scaddan J (2006) Internal fixation of undisplaced lesions of osteochondritis dissecans in the knee. J Bone Joint Surg Br 88(7):900–904. https://doi.org/10.1302/0301-620X.88B7.17210

    Article  CAS  PubMed  Google Scholar 

  5. Tabaddor RR, Banffy MB, Andersen JS, McFeely E, Ogunwole O, Micheli LJ, Kocher MS (2010) Fixation of juvenile osteochondritis dissecans lesions of the knee using poly 96L/4D-lactide copolymer bioabsorbable implants. J Pediatr Orthop 30(1):14–20. https://doi.org/10.1097/BPO.0b013e3181c6318c

    Article  PubMed  Google Scholar 

  6. Trinh TQ, Harris JD, Flanigan DC (2012) Surgical management of juvenile osteochondritis dissecans of the knee. Knee Surg Sports Traumatol Arthrosc 20(12):2419–2429. https://doi.org/10.1007/s00167-012-1917-6

    Article  PubMed  Google Scholar 

  7. Horas U, Pelinkovic D, Herr G, Aigner T, Schnettler R (2003) Autologous chondrocyte implantation and osteochondral cylinder transplantation in cartilage repair of the knee joint. A prospective, comparative trial. J Bone Joint Surg Am 85-A(2):185–192

    Article  Google Scholar 

  8. LaPrade RF, Botker JC (2004) Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy 20(7):e69-73. https://doi.org/10.1016/j.arthro.2004.06.022

    Article  PubMed  Google Scholar 

  9. Marquass B, Mahn T, Engel T, Gossner J, Theopold JD, von Dercks N, Racynski C, Rose T, Josten C, Hepp P (2012) Clinical and radiological mid-term results after autologous osteochondral transplantation under consideration of quality of life. Z Orthop Unfall 150(4):360–367. https://doi.org/10.1055/s-0032-1314958

    Article  CAS  PubMed  Google Scholar 

  10. Chow JC, Hantes ME, Houle JB, Zalavras CG (2004) Arthroscopic autogenous osteochondral transplantation for treating knee cartilage defects: a 2- to 5-year follow-up study. Arthroscopy 20(7):681–690. https://doi.org/10.1016/j.arthro.2004.06.005

    Article  PubMed  Google Scholar 

  11. Assenmacher AT, Pareek A, Reardon PJ, Macalena JA, Stuart MJ, Krych AJ (2016) Long-term outcomes after osteochondral allograft: a systematic review at long-term follow-up of 12.3 years. Arthroscopy. https://doi.org/10.1016/j.arthro.2016.04.020

    Article  PubMed  Google Scholar 

  12. Zouzias IC, Bugbee WD (2016) Osteochondral allograft transplantation in the knee. Sports Med Arthrosc 24(2):79–84. https://doi.org/10.1097/JSA.0000000000000109

    Article  PubMed  Google Scholar 

  13. Chambers HG, Shea KG, Carey JL (2011) AAOS clinical practice guideline: diagnosis and treatment of osteochondritis dissecans. J Am Acad Orthop Surg 19(5):307–309

    Article  Google Scholar 

  14. Ochs BG, Muller-Horvat C, Albrecht D, Schewe B, Weise K, Aicher WK, Rolauffs B (2011) Remodeling of articular cartilage and subchondral bone after bone grafting and matrix-associated autologous chondrocyte implantation for osteochondritis dissecans of the knee. Am J Sports Med 39(4):764–773. https://doi.org/10.1177/0363546510388896

    Article  PubMed  Google Scholar 

  15. Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (AMIC). A one-step procedure for retropatellar articular resurfacing. Acta Orthop Belg 76(2):260–263

    PubMed  Google Scholar 

  16. Gille J, Meisner U, Ehlers EM, Muller A, Russlies M, Behrens P (2005) Migration pattern, morphology and viability of cells suspended in or sealed with fibrin glue: a histomorphologic study. Tissue Cell 37(5):339–348. https://doi.org/10.1016/j.tice.2005.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Anders S, Volz M, Frick H, Gellissen J (2013) A randomized, controlled trial comparing autologous matrix-induced chondrogenesis (amic(r)) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J 7:133–143. https://doi.org/10.2174/1874325001307010133

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W, Anders S (2013) Outcome of autologous matrix induced chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. Arch Orthop Trauma Surg 133(1):87–93. https://doi.org/10.1007/s00402-012-1621-5

    Article  CAS  PubMed  Google Scholar 

  19. Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P (2010) Mid-term results of autologous matrix-induced chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc 18(11):1456–1464. https://doi.org/10.1007/s00167-010-1042-3

    Article  CAS  PubMed  Google Scholar 

  20. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85-A Suppl 2:58–69

    Article  Google Scholar 

  21. Benthien JP, Behrens P (2010) Autologous matrix-induced chondrogenesis (amic): combining microfracturing and a collagen i/iii matrix for articular cartilage resurfacing. Cartilage 1(1):65–68. https://doi.org/10.1177/1947603509360044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kramer J, Bohrnsen F, Lindner U, Behrens P, Schlenke P, Rohwedel J (2006) In vivo matrix-guided human mesenchymal stem cells. Cell Mol Life Sci 63(5):616–626. https://doi.org/10.1007/s00018-005-5527-z

    Article  CAS  PubMed  Google Scholar 

  23. Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063. https://doi.org/10.1177/0363546508328414

    Article  PubMed  Google Scholar 

  24. Anders S (2012) Zellfreie Therapie der Osteochondrosis dissecans des Kniegelenkes unter Verwendung einer Kollagen I/III-Matrix. Paper presented at the Deutscher Kongress für Orthopädie und Unfallchirurgie (DKOU 2012), Berlin

  25. Kusano T, Jakob RP, Gautier E, Magnussen RA, Hoogewoud H, Jacobi M (2012) Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrosc 20(10):2109–2115. https://doi.org/10.1007/s00167-011-1840-2

    Article  PubMed  Google Scholar 

  26. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, Hurtig M, Buschmann MD (2011) Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res 29(8):1178–1184. https://doi.org/10.1002/jor.21386

    Article  PubMed  Google Scholar 

  27. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD (2009) Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res 27(11):1432–1438. https://doi.org/10.1002/jor.20905

    Article  PubMed  Google Scholar 

  28. Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H (2014) Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med 42(11):2741–2750. https://doi.org/10.1177/0363546514547029

    Article  PubMed  Google Scholar 

  29. Orth P, Goebel L, Wolfram U, Ong MF, Graber S, Kohn D, Cucchiarini M, Ignatius A, Pape D, Madry H (2012) Effect of subchondral drilling on the microarchitecture of subchondral bone: analysis in a large animal model at 6 months. Am J Sports Med 40(4):828–836. https://doi.org/10.1177/0363546511430376

    Article  PubMed  Google Scholar 

  30. Neumann K, Dehne T, Endres M, Erggelet C, Kaps C, Ringe J, Sittinger M (2008) Chondrogenic differentiation capacity of human mesenchymal progenitor cells derived from subchondral cortico-spongious bone. J Orthop Res 26(11):1449–1456. https://doi.org/10.1002/jor.20635

    Article  CAS  PubMed  Google Scholar 

  31. Sadr KN, Pulido PA, McCauley JC, Bugbee WD (2016) Osteochondral allograft transplantation in patients with osteochondritis dissecans of the knee. Am J Sports Med. https://doi.org/10.1177/0363546516657526

    Article  PubMed  Google Scholar 

  32. Pareek A, Reardon PJ, Maak TG, Levy BA, Stuart MJ, Krych AJ (2016) Long-term outcomes after osteochondral autograft transfer: a systematic review at mean follow-up of 10.2 years. Arthroscopy 32(6):1174–1184. https://doi.org/10.1016/j.arthro.2015.11.037

    Article  PubMed  Google Scholar 

  33. Mithoefer K, Della Villa S (2012) Return to sports after articular cartilage repair in the football (soccer) player. Cartilage 3(1 Suppl):57S-62S. https://doi.org/10.1177/1947603511410419

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krych AJ, Pareek A, King AH, Johnson NR, Stuart MJ, Williams RJ 3rd (2017) Return to sport after the surgical management of articular cartilage lesions in the knee: a meta-analysis. Knee Surg Sports Traumatol Arthrosc 25(10):3186–3196. https://doi.org/10.1007/s00167-016-4262-3

    Article  PubMed  Google Scholar 

  35. Steinhagen J, Bruns J, Deuretzbacher G, Ruether W, Fuerst M, Niggemeyer O (2010) Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes. Int Orthop 34(6):819–825. https://doi.org/10.1007/s00264-009-0841-y

    Article  PubMed  Google Scholar 

  36. Maus U, Schneider U, Gravius S, Muller-Rath R, Mumme T, Miltner O, Bauer D, Niedhart C, Andereya S (2008) Clinical results after three years use of matrix-associated ACT for the treatment of osteochondral defects of the knee. Z Orthop Unfall 146(1):31–37. https://doi.org/10.1055/s-2007-989353

    Article  CAS  PubMed  Google Scholar 

  37. Filardo G, Kon E, Berruto M, Di Martino A, Patella S, Marcheggiani Muccioli GM, Zaffagnini S, Marcacci M (2012) Arthroscopic second generation autologous chondrocytes implantation associated with bone grafting for the treatment of knee osteochondritis dissecans: Results at 6 years. Knee 19(5):658–663. https://doi.org/10.1016/j.knee.2011.08.007

    Article  PubMed  Google Scholar 

Download references

Funding

There is no funding source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Hoburg.

Ethics declarations

Conflict of interest

All authors would like to state that they have no conflict of Interest. No outside funding or grants were received that assisted in the study. Thus, this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical approval

The article contains human participants and ethical approval was obtained by local authorities.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoburg, A., Leitsch, J.M., Diederichs, G. et al. Treatment of osteochondral defects with a combination of bone grafting and AMIC technique. Arch Orthop Trauma Surg 138, 1117–1126 (2018). https://doi.org/10.1007/s00402-018-2944-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-2944-7

Keywords

Navigation