Skip to main content

Advertisement

Log in

Assessing the Bacterial Community Structure in the Rhizoplane of Wetland Plants

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Plant-microorganism interaction in the rhizosphere is important for nutrient cycling, carbon sequestration in natural ecosystems, contaminant elimination and ecosystem functioning. Abundance of microbial communities and variation in species composition can be an imperative determinant of phytoremediation capability. In the present study we have assessed the bacterial community structure in the rhizoplane of wetland plants, Acorus calamus, Typha latifolia, and Phragmites karka using Terminal restriction fragment length polymorphism technique. The most dominant phylum, in the plants under study, was phylum Firmicutes, followed by Proteobacteria and Actinobacteria. Bacterial groups belonging to phylum Chloroflexi, Acidobacteria, Deferribacteres and Thermotogae also showed their presence in P. karka and T. latifolia but were absent in A. calamus. Diversity indices of bacterial community were assessed. The results of this study show the presence of bacterial phyla which play an important role in bioremediation of contaminants. Thus these plants can be used as potential candidates of phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abed RMM, Al-Kharusi S, Gkorezis P, Prigent P, Headley T (2018) Bacterial communities in the rhizosphere of Phragmites australis from an oil-polluted wetland. Arch Agron Soil Sci 64(3):360–370

    Article  CAS  Google Scholar 

  • Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA, Benimeli CS, Poltri MA, Amoroso MJ (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62

    Article  CAS  Google Scholar 

  • Arroyo P, Ansola G, Blanco I, Molleda P, de Luis Calabuig E, de Miera LES (2010) Comparative analysis of the composition of bacterial communities from two constructed wetlands for municipal and swine wastewater treatment. J Water Health 8(1):147–157

    Article  CAS  Google Scholar 

  • Barns SM, Cain EC, Sommerville L, Kuske CR (2007) Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73(9):3113–3116

    Article  CAS  Google Scholar 

  • Baz SE (2017) Bioremediation of heavy metals by actinobacteria: review. Am J Innov Res Appl Sci 5(5):359–369

    Google Scholar 

  • Behera P, Mohapatra M, Adhya TK, Suar M, Pattnaik AK, Rastogi G (2018) Structural and metabolic diversity of rhizosphere microbial communities of Phragmites karka in a tropical coastal lagoon. Appl Soil Ecol 125:202–212

    Article  Google Scholar 

  • Borsodi AK, Vladár P, Cech G, Gedeon G, Beszteri B, Micsinai A, Reskone N, Márialigeti K (2003) Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia 506(1):721–728

    Article  Google Scholar 

  • Borsodi AK, Rusznyák A, Molnár P, Vladár P, Reskóné MN, Tóth EM, Sipos R, Gedeon G, Márialigeti K (2007) Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microb Ecol 53(4):612–620

    Article  Google Scholar 

  • Calheiros CS, Duque AF, Moura A, Henriques IS, Correia A, Rangel AO, Castro PM (2009) Changes in the bacterial community structure in two-stage constructed wetlands with different plants for industrial wastewater treatment. Bioresour Technol 100(13):3228–3235

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  CAS  Google Scholar 

  • Chen S, Luo J, Hu M, Lai K, Geng P, Huang H (2012b) Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01. Bioresour Technol 110:97–104

    Article  CAS  Google Scholar 

  • Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301(5634):829–832

    Article  CAS  Google Scholar 

  • Doolotkeldieva T, Konurbaeva M, Bobusheva S (2017) Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0048-5

    Article  Google Scholar 

  • Evans TN, Watson G, Rees GN, Seviour RJ (2014) Comparing activated sludge fungal community population diversity using denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism. Antonie Van Leeuwenhoek 105(3):559–569

    Article  Google Scholar 

  • Fauziah SH, Jayanthi B, Emenike CU, Agamuthu (2017) Remediation of heavy metal contaminated soil using potential microbes isolated from a closed disposal site. Int J Biosci Biochem Bioinform 7(4):230–237

    Google Scholar 

  • Fawzy MA, Mohamed AKSH (2017) Bioremediation of heavy metals from municipal sewage by cyanobacteria and its effects on growth and some metabolites of Beta vulgaris. J Plant Nutr 40(18):2550–2561

    Article  CAS  Google Scholar 

  • Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87(1):37–42

    Article  CAS  Google Scholar 

  • Gupta RK, Choudhary KK, Kumar M, Negi A, Rai H (2012) Bioremediation and cyanobacteria an overview. Bionano Front 9:190–196

    Article  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180(18):4765–4774

    CAS  Google Scholar 

  • Hussain F, Mustufa G, Zia R, Faiq A, Matloob M, Shah H, Ali WR, Irfan JA (2018) Constructed wetlands and their role in remediation of industrial effluents via plant-microbe interaction—a mini review. J Bioremediat Biodegrad 9(4):1–8

    Article  CAS  Google Scholar 

  • James A, Singh DK, Khankhane PJ (2018) Enhanced atrazine removal by hydrophyte—bacterium associations and in vitro screening of the isolates for their plant growth-promoting potential. Int J Phytorem 20(2):89–97

    Article  CAS  Google Scholar 

  • Knuteson SL, Wilson PC, Whitwell T, Klaine SJ (2000) Constructed wetlands using ornamental plants to remediate golf course pesticides. SNA Res Conf 45:375

    Google Scholar 

  • Kumar A, Bhoot N, Soni I, John PJ (2014) Isolation and characterization of a Bacillus subtilis strain that degrades endosulfan and endosulfan sulfate. 3 Biotech 4(5):467–475

    Article  CAS  Google Scholar 

  • Li YH, Zhu JN, Liu QF, Liu Y, Liu M, Liu L, Zhang Q (2013) Comparison of the diversity of root-associated bacteria in Phragmites australis and Typha angustifolia L. in artificial wetlands. W J Microbiol Biotechnol 29(8):1499–1508

    Article  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Nithya C, Pandian SK (2012) Evaluation of bacterial diversity in Palk Bay sediments using terminal-restriction fragment length polymorphisms (T-RFLP). Appl Biochem Biotechnol 167(6):1763–1777

    Article  CAS  Google Scholar 

  • Nongkhlaw FMW, Joshi SR (2014) Distribution pattern analysis of epiphytic bacteria on ethnomedicinal plant surfaces: a micrographical and molecular approach. J Microsc Ultrastruct 2(1):34–40

    Article  Google Scholar 

  • Pandey VC, Prakash P, Bajpai O, Kumar A, Singh N (2015) Phytodiversity on fly ash deposits: evaluation of naturally colonized species for sustainable phytorestoration. Environ Sci Pollut Res 22(4):2776–2787

    Article  CAS  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Richter-Heitmann T, Eickhorst T, Knauth S, Friedrich MW, Schmidt H (2016) Evaluation of strategies to separate root-associated microbial communities: a crucial choice in rhizobiome research. Front Microbiol 7:773

    Article  Google Scholar 

  • Sarkar J, Kazy SK, Gupta A, Dutta A, Mohapatra B, Roy A, Bera P, Mitra A, Sar P (2016) Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Front Microbiol 7:1407

    Article  Google Scholar 

  • Shannon CE, Weaver W (1963) The measurement theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Tanaka Y, Tamaki H, Matsuzawa H, Nigaya M, Mori K, Kamagata Y (2012) Microbial community analysis in the roots of aquatic plants and isolation of novel microbes including an organism of the candidate phylum OP10. Microbes Environ 27(2):149–157

    Article  Google Scholar 

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67(5):1167–1179

    Article  Google Scholar 

  • Vik U, Logares R, Blaalid R, Halvorsen R, Carlsen T, Bakke I, Kolsto A-B, Okstad OA, Kauserud H (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471

    Article  Google Scholar 

  • Vladár P, Rusznyák A, Márialigeti K, Borsodi AK (2008) Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb Ecol 56(1):64–75

    Article  Google Scholar 

  • Wilson PC, Whitwell T, Klaine SJ (2000) Phytotoxicity, uptake, and distribution of 14C-simazine in Acorus gramenius and Pontederia cordata. Weed Sci 48(6):701–709

    Article  CAS  Google Scholar 

  • Yan Z, Jiang H, Cai H, Zhou Y, Krumholz LR (2015) Complex interactions between the macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo [a] pyrene degradation in sediments. Sci Rep 5:10709

    Article  Google Scholar 

  • Yang A, Liu N, Tian Q, Bai W, Williams M, Wang Q, Li LH, Zhang WH (2015) Rhizosphere bacterial communities of dominant steppe plants shift in response to a gradient of simulated nitrogen deposition. Front Microbiol 6:789

    Google Scholar 

  • Zehra A, Khan MA (2007) Comparative effect of NaCl and sea salt on germination of halophytic grass Phragmites karka at different temperature regimes. Pak J Bot 39(5):1681–1694

    Google Scholar 

  • Zhang B, Zhang P, Chen X (2000) Factors affecting colonization of introduced microorganisms on plant roots. Ying yong sheng tai xue bao = J Appl Ecol/Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban 11(6):951–953

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support by Indian Council of Agricultural Research, New Delhi, India, as research project entitled “Bioremediation of contaminants in polluted sites: Use of weedy plants” NFBSFARA/ WQ-3032/2013-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanvi Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, T., Singh, D.K. Assessing the Bacterial Community Structure in the Rhizoplane of Wetland Plants. Bull Environ Contam Toxicol 101, 521–526 (2018). https://doi.org/10.1007/s00128-018-2426-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-018-2426-1

Keywords

Navigation