Skip to main content

Advertisement

Log in

Diversity of Sulfate-Reducing Bacteria Inhabiting the Rhizosphere of Phragmites australis in Lake Velencei (Hungary) Revealed by a Combined Cultivation-based and Molecular approach

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The community structure of sulfate-reducing bacteria (SRB) associated with reed (Phragmites australis) rhizosphere in Lake Velencei (Hungary) was investigated by using cultivation-based and molecular methods. The cultivation methods were restricted to recover lactate-utilizing species with the exclusion of Desulfobacter and some Desulfobacterium species presumably not being dominant members of the examined community. The most-probable-number (MPN) estimations of lactate-utilizing SRB showed that the cell counts in reed rhizosphere were at least one order of magnitude higher than that in the bulk sediment. The number of endospores was low compared to the total SRB counts. From the highest positive dilution of MPN series, 47 strains were isolated and grouped by restriction fragment length polymorphism (RFLP) analysis of the amplified 16S ribosomal RNA (rRNA) and dsrAB (dissimilatory sulfite reductase) genes. Contrary to the physiological diversity of the isolates, the combined results of RFLP analysis revealed higher diversity at species as well as at subspecies level. Based on the partial 16S rRNA sequences, the representative strains were closely affiliated with the genera Desulfovibrio and Desulfotomaculum. The partial dsrAB sequences of the clones, recovered after isolation and PCR amplification of the community DNA, were related to hitherto uncultured species of the genera Desulfovibrio and Desulfobulbus. Nevertheless, the representative of the second largest clone group was shown to be closely affiliated with the sequenced dsrAB gene of a strain isolated from the same environment and identified as Desulfovibrio alcoholivorans. Another clone sequence was closely related to a possible novel species also isolated within the scope of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Acha, D, Iniguez, V, Roulet, M, Guimaraes, JR, Luna, R, Alanoca, L, Sanchez, S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an amazonian floodplain lake in Bolivia and their association with Hg methylation. Appl Environ Microbiol 71:7531–7535

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, TA, Guthrie, EA, Walton, BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  3. Bak, F, Pfennig, N (1991) Sulfate-reducing bacteria in littoral sediment of Lake Constance. FEMS Microbiol Ecol 85:43–52

    Article  Google Scholar 

  4. Borsodi, AK, Vladár, P, Cech, G, Gedeon, G, Beszteri, B, Micsinai, A, Reskóné, NM, Márialigeti, K (2003) Bacterial activities in the sediment of Lake Velencei, Hungary. Hydrobiologia 506–509:721–728

    Article  Google Scholar 

  5. Bryant, MP, Campbell, LL, Reddy, CA, Crabill, MR (1977) Growth of Desulfovibrio in lactate and ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    PubMed  CAS  Google Scholar 

  6. Chartrain, M, Zeikus, JG (1986) Microbial ecophysiology of whey biomethanation: characterization of bacterial trophic populations and prevalent species in continuous culture. Appl Environ Microbiol 51:188–196

    PubMed  CAS  Google Scholar 

  7. Cifuentes, A, Anton, J, de Wit, R, Rodriguez-Valera, F (2003) Diversity of bacteria and archea in sulphate-reducing enrichment cultures inoculated from serial dilution of Zostera noltii rhizosphere samples. Environ Microbiol 5:754–764

    Article  PubMed  CAS  Google Scholar 

  8. Cochran, WG (1950) Estimation of bacterial densities by means of the “most probable number.”. Biometrics 6:105–116

    Article  PubMed  CAS  Google Scholar 

  9. Cypionka, H (2000) Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–848

    Article  PubMed  CAS  Google Scholar 

  10. Cypionka, H, Widdel, F, Pfennig, N (1985) Survival of sulfate-reducing bacteria after oxygen stress and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31:39–45

    Article  CAS  Google Scholar 

  11. Dannenberg, S, Kroder, M, Dilling, W, Cypionka, H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulphate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  12. Devereux, R, Hines, ME, Stahl, DA (1996) S cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microb Ecol 32:283–292

    Article  PubMed  CAS  Google Scholar 

  13. Dilling, W, Cypionka, H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–128

    CAS  Google Scholar 

  14. Eilers, H, Pernthaler, J, Glöckner, FO, Amann, R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  PubMed  CAS  Google Scholar 

  15. Garthright, WE, Blodgett, RJ (2003) FDA’s preferred MPN methods for standard, large or unusual tests, with a spreadsheet. Food Microbiol 20:439–445

    Article  Google Scholar 

  16. Godon, JJ, Zumstein, E, Dabert, P, Habouzit, F, Moletta, R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63:2802–2813

    PubMed  CAS  Google Scholar 

  17. Hines, ME, Evans, RS, Sharak Genthner, BR, Willis, SG, Friedman, S, Rooney-Varga, JN, Devereux R (1999) Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 65:2209–2216

    PubMed  CAS  Google Scholar 

  18. Holmer M, Jensen HS, Christensen KK, Wigand C, Andersen FØ (1998) Sulfate reduction in lake sediments inhabited by the isoetid macrophytes Littorella uniflora and Isoetes lacustris. Aquat Bot 60:307–324

    Article  CAS  Google Scholar 

  19. Holmer, M, Storkholm, P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451

    Article  CAS  Google Scholar 

  20. Ingvorsen, K, Brock, TD (1982) Electron flow via sulfate reduction and methanogenesis in the anaerobic hypolimnion of Lake Mendota. Limnol Oceanogr 27:559–564

    Article  CAS  Google Scholar 

  21. Jonkers, HM, Koh, IO, Behrend, P, Muyzer, G, de Beer, D (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb Ecol 49:291–300

    Article  PubMed  CAS  Google Scholar 

  22. Jørgensen, BB (1982) Mineralization of organic matter in the sea bed. The role of sulphate reduction. Nature 296:643–645

    Article  Google Scholar 

  23. Jørgensen, BB (1990) The sulfur cycle of freshwater sediments: role of thiosulfate. Limnol Oceanogr 35:1329–1342

    Google Scholar 

  24. Kimura, M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  25. Kremer, DR, Nienhuis-Kuiper, HE, Hansen, TA (1988) Ethanol dissimilation in Desulfovibrio. Arch Microbiol 150:552–557

    Article  CAS  Google Scholar 

  26. Kuever, J, Rainey, FA, Widdel, F (2005) Family II. Desulfobulbaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria), Springer, New York, p 988

    Google Scholar 

  27. Kuivila, KM, Murray, JW, Devol, AH (1989) Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochim Cosmochim Acta 53:409–416

    Article  CAS  Google Scholar 

  28. Kumar, S, Tamura, K, Nei, M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  29. Küsel, K, Pinkart, HC, Drake, HL, Devereux, R (1999) Acetogenic and sulfate-reducing bacteria inhabiting the rhizoplane and deep cortex cells of the sea grass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    PubMed  Google Scholar 

  30. Laanbroek, HJ, Geerligs, HJ, Sijtsma, L, Veldkamp, H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334

    PubMed  CAS  Google Scholar 

  31. Lakatos, G, Kiss, MK, Kiss, M, Juhász, P (1997) Application of constructed wetlands for wastewater treatment in Hungary. Water Sci Technol 35:331–336

    Article  CAS  Google Scholar 

  32. Lane, DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–149

    Google Scholar 

  33. Li, JH, Purdy, KJ, Takii, S, Hayashi, H (1999) Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment. FEMS Microbiol Ecol 28:31–39

    Article  CAS  Google Scholar 

  34. Mallet, C, Basset, M, Fonty, G, Desvilettes, C, Bourdier, G, Debroas, D (2004) Microbial population dynamics in the sediments of a eutrophic lake (Aydat, France) and characterization of some heterotrophic bacterial isolates. Microb Ecol 48:66–77

    Article  PubMed  CAS  Google Scholar 

  35. Mogensen, GL, Kjeldsen, KU, Ingvorsen, K (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 11:339–349

    CAS  Google Scholar 

  36. Nielsen, LB, Finster, K, Welsh, DT, Donelly, A, Herbert, RA, de Wit, R, Lomstein, BA (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71

    Article  PubMed  CAS  Google Scholar 

  37. Okabe, S, Ito, T, Sugita, K, Satoh, H (2005) Succession of internal sulfur cycle and sulfide-oxidizing bacterial community in microaerophilic wastewater biofilms. Appl Environ Microbiol 71:2520–2529

    Article  PubMed  CAS  Google Scholar 

  38. Ollivier, B, Cord-Ruwisch, R, Hatchikian, EC, Garcia, JL (1988) Characterization of Desulfovibrio fructosivorans sp. nov. Arch Microbiol 149:447–450

    Article  CAS  Google Scholar 

  39. Postgate, JR (1984) The sulphate-reducing bacteria. Cambridge University Press, London

    Google Scholar 

  40. Quatibi AI, Niviere V, Garcia JL (1991) Desulfovibrio alcoholivorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Arch Microbiol 155:143–148

    Article  Google Scholar 

  41. Reskóné, MN, Borsodi, AK (2003) Long-term investigations on the changes of the MPN values of bacterial communities participating in the sulphur cycle in Lake Velencei, Hungary. Hydrobiologia 506–509:715–720

    Article  Google Scholar 

  42. Rooney-Varga, JN, Devereux, R, Evans, RS, Hines, ME (1997) Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Appl Environ Microbiol 63:3895–3901

    PubMed  CAS  Google Scholar 

  43. Russel, RA, Holden, PJ, Wilde, KL, Neilan, BA (2003) Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholivorans isolated from an artificial wetland. Hydrometallurgy 71:227–234

    Article  CAS  Google Scholar 

  44. Santegoeds, CM, Ferdelman, TG, Muyzer, G, de Beer, D (1998) Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Appl Environ Microbiol 64:3731–3739

    PubMed  CAS  Google Scholar 

  45. Sass, H, Cypionka, H, Babenzien, HD (1997) Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol 22:31–39

    Google Scholar 

  46. Sass, H, Wieringa, E, Cypionka, H, Babenzien, HD, Overmann, J (1998) High genetic and physiological diversity of sulfate-reducing bacteria isolated from an oligotrophic lake sediment. Arch Microbiol 170:243–251

    Article  PubMed  CAS  Google Scholar 

  47. Strunk, O, Ludwig, W (1996) ARB: a software environment for sequence data. Technical University of Munich, Germany. http://www.arb-home.de/

  48. Stubner, S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 50:155–164

    Article  Google Scholar 

  49. Vester, F, Ingvorsen, K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64:1700–1707

    PubMed  CAS  Google Scholar 

  50. Vymazal, J, Krőpfelová, L (2005) Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecol Eng 25:606–621

    Article  Google Scholar 

  51. Wagner, M, Roger, AJ, Flax, JL, Brusseau, GA, Stahl, DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    PubMed  CAS  Google Scholar 

  52. Waisel, Y, Agami, M (1996) Ecophysiology of roots of submerged aquatic plants. In: Waisel, Y, Eshel, A, Kafkafi, U (eds) Plant roots: the hidden half. Marcel Dekker, New York

    Google Scholar 

  53. Widdel, F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder, AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 469–585

    Google Scholar 

  54. Widdel, F, Bak, F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Ballows, A, Trüper, HG, Dworkin, M, Harder, W, Schleifer, KH (eds) The prokaryotes. Springer, New York, pp 3352–3372

    Google Scholar 

  55. Widdel, F, Pfennig, N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131:360–365

    Article  CAS  Google Scholar 

  56. Wind, T, Conrad, R (1997) Localization of sulphate reduction in planted and unplanted rice field soil. Biogeochemistry 37:253–278

    Article  CAS  Google Scholar 

  57. Wind, T, Stubner, S, Conrad, R (1999) Sulfate-reducing bacteria in rice field soil and on rice roots. Syst Appl Microbiol 22:269–279

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Hungarian Scientific Research Fund (OTKA) grant T038021. We are grateful to M. N. Reskóné and G. Kiss (Central Transdanubian Inspectorate for Environmental Protection, Székesfehérvár) for their help in the sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea K. Borsodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladár, P., Rusznyák, A., Márialigeti, K. et al. Diversity of Sulfate-Reducing Bacteria Inhabiting the Rhizosphere of Phragmites australis in Lake Velencei (Hungary) Revealed by a Combined Cultivation-based and Molecular approach. Microb Ecol 56, 64–75 (2008). https://doi.org/10.1007/s00248-007-9324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9324-0

Keywords

Navigation