Skip to main content
Log in

Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy)

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The CO2-rich geothermal fluids produced in the Piancastagnaio geothermal field (Mt. Amiata geothermal area, Southern Tuscany, Italy) show temperatures up to 360°C and pressures of about 200 bar at depths of around 3,500 m (Giolito, Ph.D. thesis, Università degli Studi di Firenze, Italy, pp 1–147, 2005). CaCO3- and/or SiO2-dominated scales are deposited in the pipes leading to the pressure and atmospheric separators of the geothermal wells. High content of metastibnite and/or stibnite in both calcite and silica scales and Sb contents of up to 50 mg/L in the fluids indicate their mineralising potential. The red or black colours of the scales depend on the predominance of red metastibnite or black stibnite, respectively. In our condensation experiments, as well as during deposition of the scales, metastibnite is the first Sb2S3 mineral to form. In a second stage, metastibnite is transformed to stibnite. During depressurization the Hg content of geothermal fluids partitions preferentially into the gas phase, whereas Sb and As remain in the liquid phase. This separation explains the often observed areal separation of Hg and Sb mineralization. The multistage deposition of Sb in the mining district of Tuscany is due to a periodic restoration of the permeability of the ore-bearing faults by microseismic events and subsequent host rock brecciation. The still ongoing microseismic events are induced by the accumulation of high-pressure CO2-rich fluids along faults followed by mechanical failure of the faults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlfeld F, Schneider-Scherbina A (1964) Los yacimientos minerales y de hidrocarburos de Bolivia. Dep Nac Geol Bol 5:1–388

    Google Scholar 

  • Ashley PM, Craw D (1995) Carrick Range Au and Sb mineralization in Caples Terrane, Otago Schist, Central Otago, New Zealand. NZ J Geol Geophys 38:137–149

    Google Scholar 

  • Atkinson P, Celati R, Corsi R, Kucuk F, Ramey HJ Jr (1978) Thermodynamic behaviour of the Bagnore geothermal field. Geothermics 7:185–208

    Article  Google Scholar 

  • Baldi P, Bertini G, Cameli GM, Decandia FA, Dini I, Lazzarotto A, Lotta D (1994) La tettonica distensiva post-collisionale nell’area geotermica di Larderello (Toscana Meridionale). Studi Geol Camerti, Spec Vol. 1, pp 183–193

  • Baldi P, Bellani S, Ceccarelli A, Fordelisi A, Rocchi G, Squarci P, Taffi L (1995) Geochemical anomalies and structural features of Southern Tuscany (Italy). Proc World Geoth Congr, Firenze, 18–31 May 1995, pp 7–11

  • Ballantyne JM, Moore JN (1988) Arsenic geochemistry in geothermal systems. Geochim Cosmochim Acta 52:475–483

    Article  Google Scholar 

  • Batini F, Brogi A, Lazzarotto A, Liotta D, Pandeli E (2003) Geological features of Larderello-Travale and Mt. Amiata geothermal areas (southern Tuscany, Italy). Episodes 26:239–244

    Google Scholar 

  • Bencini A, Ciurli C, Tanelli G, Verrucchi C (1990) Distribution of gold in some magmatic rocks from central Italy. Miner Depos 25:82–85

    Article  Google Scholar 

  • Bertini G, Cappetti G, Dini I, Lovari F (1995) Deep drilling results and updating of geothermal knowledge of the Monte Amiata area. Proc World Geotherm Congr, Firenze, Italy 18–31 May 1995, pp 1283–1286

  • Bertini G, Cappetti G, Fiordalisi A (2005) Characteristics of geothermal fields in Italy. Giorn Geol App 1:247–254

    Google Scholar 

  • Brogi A (2007) The structure of the Monte Amiata volcano-geothermal area (Northern Apennines, Italy): Neogene-Quaternary compression versus extension. Int J Earth Sci 97:677–703

    Article  Google Scholar 

  • Cameli GM, Dini I, Liotta D (1993) Upper crustal structure of the Larderello geothermal field as a feature of post collisional extensional tectonics (Southern Tuscany, Italy). Tectonophysics 224:413–423

    Article  Google Scholar 

  • Cameli GM, Dini I, Liotta D (1998) Brittle/ductile boundary from seismic reflection lines of southern Tuscany (Northern Apennines, Italy). Mem Soc Geol Ital 52:153–162

    Google Scholar 

  • Cappetti G, Ceppatelli L (2005) Geothermal power generation in Italy 2000–2004 update report. Proc World Geother Congr, Antalya, Turkey, 24–29 April, pp 24–29

  • Cappetti G, D’Olimpio P, Sabatelli F, Tarquini B (1995) Inhibition of antimony sulphide scales by chemical additives: laboratory and field test results. Proc World Geotherm Congr, Firenze, 18–31 May 1995, pp 2503–2507

  • Cappetti G, Passaleva G, Sabatelli F (2000) Italy country update report 1995–1999. Proc World Geotherm Congr, Kyusho, Tohoku, Japan, May 28–June 10, 2000, pp 109–116

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzaretto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238:295–315

    Article  Google Scholar 

  • Cavinato GP, De Celles PG (1999) Extensional basins in the tectonical bimodal central Apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27:955–958

    Article  Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Parello F, Peruzzi L (2000) Rate of diffuse carbon dioxide earth degassing estimated from carbon balance of regional aquifers: the case of the Central Apennine, Italy. J Geophys Res 105:8423–8434

    Article  Google Scholar 

  • Chovan M, Schroll E, Andrai P, Ebner F, Kotulova J, Mali H, Prohaska W (2002) Stibnite mineralization of Western Karpathians and Eastern Alps. Geological, mineralogical, and geochemical features. Geol Carpath 53:91–97

    Google Scholar 

  • Clark JR, Williams-Jones AE (1990) Analogues of epithermal gold-silver deposition in geothermal well scales. Nature 346:644–654

    Article  Google Scholar 

  • Collettini C (2002) Hypothesis for the mechanics and seismic behaviour of low-angle normal faults: the example of the Altotiberina fault, Northern Apennines. Ann Geophys 45:683–698

    Google Scholar 

  • Corsi R, Culivicchi G, Sabatelli F (1985) Laboratory and field testing of calcium carbonate scale inhibitors. Geotherm Res Counc Trans 9:239–244

    Google Scholar 

  • Couto H, Roge G, Moëlo Y, Bril H (1990) Le district à antimoine-or Dúrico-Beirão (Portugal): èvolution paragénétique et géochimique; implications métallogénetiques. Miner Depos 25(Suppl):69–81

    Article  Google Scholar 

  • D’Amore F, Bolognesi L (1994) Isotopic evidence for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy, and the Geysers, California. Geothermics 23:21–32

    Article  Google Scholar 

  • Davies DR, Paterson DB, Griffiths DHC (1986) Antimony in South Africa. J South Afric Inst Min Metall 86:173–193

    Google Scholar 

  • Dessau G (1952) Antimony deposits of Tuscany. Econ Geol 47:423–434

    Article  Google Scholar 

  • Dessau G (1977) Die Quecksilber- und Antimonlagerstätten der Toskana In: Baumann L, Leeder O (eds.) Probleme der Paragenese; topical report of IAGOD, Vol. VII 1976 Freiberger Fh, Reihe C: Geowissenschaften, Mineralogie-Geochemie 328:47–71

  • Dessau G, Duchi G, Stea B (1972) Geologia e depositi minerari della zona dei Monti Romani-Monteti (Comuni di Manciano e Capalbio, Grosseto ed Ischia di Castro, Viterbo). Mem Soc Geol Ital 11:217–260

    Google Scholar 

  • Duchi V, Minissale A, Paolieri M, Prati F, Valori A (1992) Chemical relationships between the discharging fluids in the Siena-Radicofani graben and the deep fluids produced by the geothermal fields of Mt. Amiata, Torre Alfina and Latera (central Italy). Geothermics 21:401–413

    Article  Google Scholar 

  • Elter M, Pandeli E (1991) Structural features of the metamorphic Paleozoic–Triassic sequences in deep geothermal drilling of Monte Amiata area (SE Tuscany, Italy). Boll Soc Geol Ital 110:511–522

    Google Scholar 

  • Ferrara G, Tonarini S (1985) Radiometric geochronology in Tuscany: results and problems. Rend Soc Ital Mineral Petrol 40:111–124

    Google Scholar 

  • Ferrari L, Conticelli S, Burlamacchi L, Manetti P (1996) Volcanological evolution of the Monte Amiata, Southern Tuscany: new geological and petrochemical data. Acta Vulcanol 8:41–56

    Google Scholar 

  • Forschungsvereinigung der Gipsindustrire e.V. (1995) Gips-Datenbuch. Bundesverband der Gips- und Gipsplattenindustrie e.V, Darmstadt, pp 1–70

    Google Scholar 

  • Fournier RO (1985) Carbonate transport and deposition in the epithermal environment. In: Berger BR, Bethge PM (eds.) Geology and Geochemistry of Epithermal systems. Reviews in Economic Geology, pp 63–71

  • Ghisetti F, Vezzani I (2002) Normal faulting, transcurrent permeability and seismogenesis in the Apennines (Italy). Tectonophysics 348:155–168

    Article  Google Scholar 

  • Gianelli G (1985) On the origin of geothermal CO2 by metamorphic processes. Boll Soc Geol Ital 104:575–584

    Google Scholar 

  • Gianelli G, Puxeddu M, Batini F, Bertini G, Dini I, Pandeli E, Nicolich R (1988) Geological model of a young volcano-plutonic system, the geothermal region of Monte Amiata (Tuscany, Italy). Geothermics 17:719–734

    Article  Google Scholar 

  • Gianelli G, Manzella A, Puxeddu M (1997) Crustal models of the geothermal areas of southern Tuscany (Italy). Tectonophysics 281:221–239

    Article  Google Scholar 

  • Giolito C (2005) Geochemical evolution of the crustal fluids in the hydrothermal system of the Mt. Amiata (Central Italy). Ph.D. Thesis, Università degli Studi di Firenze, Italy, pp 1–147

  • Gokce A, Spiro B (1994) Stable isotope study of antimonite deposits in the Muratdagi region, western Turkey. Miner Deposita 29:361–365

    Article  Google Scholar 

  • Gokce A, Spiro B (1996) Stable isotope (O, H, and C) studies and the origin of the mineralising fluid in the vein type antimony deposits in the Turhal Area, Turkey. Turk J Eart Sci 5:39–43

    Google Scholar 

  • Gray JD, Gent CA, Snee LW, Wilson FH (1997) Epithermal mercury-antimony and gold-bearing vein lodes of south western Alaska. In: Goldfarb RJ, Miller ED (eds.), Mineral deposits of Alaska, Econ Geol Monogr 9: 287–305

  • Hagemann SG, Lüders V (2003) P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits. Western Australia: conventional and infrared microthermometric constraints. Miner Depos 38:936–952

    Article  Google Scholar 

  • Hutchinson CS (1983) Economic deposits and their tectonic setting. Macmillan, Hongkong, pp 1–365

    Google Scholar 

  • IAEA/WMO (2001) Global network of isotopes in precipitation. The GNIP database. Accessible at http://isohis.iaea.org

  • James-Smith J, Cauzid J, Testemale D, Liu W, Hazemann J-J, Proux O, Etschmann B, Philippot P, Banks D, Williams P, Brugger J (2010) Arsenic speciation in fluid inclusions using micro-beam X-ray absorption spectroscopy. A Min 95:921–932

    Article  Google Scholar 

  • Klemm DD, Neumann N (1984) Ore-controlling factors in the Hg-Sb province of southern Tuscany, Italy. In: Wauschkuhn A, Kluth C, Zimmermann RA (eds) Syngenesis and epigenesis in the formation of mineral deposits. Springer-Verlag, Heidelberg, pp 482–503

    Google Scholar 

  • Krainov SR, Ryzhenko BN, Cherkasova EV (2008) Geochemical evolution of Sb migration species in carbonate and thermal waters in relation to Sb hydrogenic mineralization. Geochem Int 46:233–259

    Google Scholar 

  • Krupp R (1988) Solubility of stibnite in hydrogen sulphide solutions, speciation, and equilibrium constants, from 25 to 350°C. Geochim Cosmochim Acta 52:3005–3015

    Article  Google Scholar 

  • Lattanzi P (1994) Epithermal precious metal deposits of Italy—an overview. Miner Depos 34:630–638

    Article  Google Scholar 

  • Lotti B (1901) Die Zinnober und Antimon führenden Lagerstätten der Toscana und ihre Beziehungen zu den quartären Eruptivgesteinen. Z Prakt Geol 9:41–46

    Google Scholar 

  • Lotti B (1908) Un giacimento cinabrifero del Pliocene presso Pereta. Rass Mineraria 219:177–178

    Google Scholar 

  • Lugli S, Morteani G, Blamart D (2002) Petrographic, REE, fluid inclusion and stable isotope study of magnesite from the Upper Triassic Burano Evaporites (Secchia Valley, northern Apennines): contributions from sedimentary, hydrothermal and metasomatic sources. Miner Depos 37:480–494

    Article  Google Scholar 

  • Marinelli G, Barberi F, Cioni R (1993) Sollevamenti neogenici e intrusioni acide della Toscana e del Lazio settentrionale. Mem Soc Geol Ital 49:279–288

    Google Scholar 

  • Merensky H (1905) The gold deposits of the Murchison Range in the north-eastern Transvaal. Trans Geol Soc South Afr 8:42–46

    Google Scholar 

  • Migdisov AA, Bychkov AY (1998) The behaviour of metals and sulphur during the formation of hydrothermal mercury-antimony-arsenic mineralization, Uzon caldera, Kamchatka, Russia. J Volcan Geotherm Res 84:153–171

    Article  Google Scholar 

  • Minissale A, Evans WC, Magro G, Vasell O (1997a) Multiple source components in gas manifestations from north-central Italy. Chem Geol 142:175–192

    Article  Google Scholar 

  • Minissale A, Magro G, Vaselli O, Verrucchi C, Perticone I (1997b) Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy). J Volcanol Geotherm Res 79:223–251

    Article  Google Scholar 

  • Minissale A, Magro G, Martinelli G, Vaselli O, Tassi GF (2000) Fluid geochemical transect in the Northern Apennines (central-northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics 319:199–222

    Article  Google Scholar 

  • Möller P, Morteani G, Dulski P, Preinfalk C (2009) Vapor/liquid fractionation of rare earths, Y3+, Na+, K+, NH4+, Cl-, HCO3-, SO42- and borate in fluids from the Piancastagnaio geothermal field, Italy. Geothermics 38:360–369

    Article  Google Scholar 

  • Murphy RV, Mathews JH (1923) The action of light on arsenic trisulfide hydrosols. J Am Chem Soc 45:16–22

    Article  Google Scholar 

  • Panichi C, Tongiorgi E (1975) Carbon isotopic composition of CO2 from springs, fumaroles, mofettes, and travertines of central and southern Italy: a preliminary prospection method of a geothermal area. In: Proc 2nd UN Symposium on the Development and Use of Geothermal resources, San Francisco, CA 1975, pp 815–825

  • Paterson CJ (1986) Control on gold and tungsten mineralization in metamorphic-hydrothermal systems. Geol Assoc Can Spec Paper 32:25–39

    Google Scholar 

  • PHREEQC (2010) PHREEQC Version 2-A, Computer Program for Speciation, Batch-reaction, One-Dimensional Transport and Inverse Geochemical Calculations. http://www.brr.cr.usgs.gov/projects/GWC_coupled/phreeqc/index.html

  • Pokrovsky GS, Borisova AY, Roux J, Hazemann J-L, Petdang A, Tella M, Testemale D (2006) Antimony speciation in saline hydrothermal fluids: a combined X-ray absorbtion fine structure spectroscopy and solubility study. Geochim Cosmochim Acta 70:4196–4214

    Article  Google Scholar 

  • Robert F, Boullier AM, Firdaous K (1995) Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophys Res 100(B7):12861–12879

    Article  Google Scholar 

  • Rosenbaum G, Lister GS (2004) Neogene and quaternary rollback evolution of the Thyrrenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23:1518–1535

    Article  Google Scholar 

  • Ruggieri G, Giolito C, Gianelli G, Manzella A, Boiron MC (2004) Application of fluid inclusions to the study of Bagnore geothermal field (Tuscany, Italy). Geothermics 35:675–692

    Article  Google Scholar 

  • Sibson RH, Robert F, Poulsen KH (1988) High angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Simmons SF, Browne PRL (2000) Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: implications for understanding low-sulfidation epithermal environments. Econ Geol 95:971–999

    Article  Google Scholar 

  • Strappa O (1977a) Storia delle miniere di mercurio del Monte Amiata; 1a parte Industria Mineraria 28:252–259

  • Strappa O (1977b) Storia delle miniere di mercurio del Monte Amiata; 2a parte Industria Mineraria 28:336–348

  • Strappa O (1977c) Storia delle miniere di mercurio del Monte Amiata; 3a parte. Ind Min 28:433–439

    Google Scholar 

  • Tanelli G, Scarsella A (1990) Tipologia e modellizzazione genetica delle mineralizzazioni aurifere epitermali della Toscana meridionale. Ind Min 11:1–9

    Google Scholar 

  • Tanelli G, Lattanzi P, Ruggieri G, Corsini F (1991) Metallogeny of gold in Tuscany, Italy. In: Ladeira EA (ed) Proc Symp Brazil Gold ´91, Belo Horizonte, 13–17 May 1991. Balkema, Rotterdam, pp 109–114

    Google Scholar 

  • Taylor P Jr, Turi B (1976) High 18O igneous rocks from the Tuscan magmatic province, Italy. Contrib Mineral Petrol 55:33–54

    Article  Google Scholar 

  • van Bergen MJ (1983) Polyphase metamorphic sedimentary xenoliths from Mt. Amiata volcanics (Central Italy); evidence for a partially disrupted contact aureole. Geol Rundsch 72:637–662

    Article  Google Scholar 

  • Vitolo S, Cialdella ML (1995) Silica separation from reinjection brines having different composition at Monta Amiata geothermal plant. Proc World Geotherm Congr, Firenze, 18–31 May 1996, pp 2463–2466

  • Wagner T, Cook NJ (2000) Late-Variscan antimony mineralization in the Rheinisches Schiefergebirge. NW Germany. Evidence for stibnite precipitation by drastic cooling of high-temperature systems. Miner Depos 35:206–222

    Article  Google Scholar 

  • William-Jones AR, Normand C (1997) Controls of mineral parageneses in the system Fe-Sb-S-O. Econ Geol 92:308–324

    Article  Google Scholar 

  • Zatsikha BV, Galaburda YA (1985) The physicochemical formation conditions for Transcarpathian mercury and arsenic-mercury deposits. Geochem Int 22:120–128

    Google Scholar 

  • Ziserman A, Serment R (1976) Classification typologique des grands gîtes d’antimoine. Mém H Sér Soc Géol France 7:285–294

    Google Scholar 

Download references

Acknowledgements

Many thanks to the ENEL-GREEN ENERGY company for the permission to sample fluids and scales. Thanks also to the staff of ENEL-GREEN ENERGY at the Larderello and Mt. Amiata facilities for many help during sampling. We thank Dr. Culivicchi (Larderello) for the discussions and advice. The manuscript has benefited from stimulating review by two anonymous reviewers and a careful editorial handling by B. Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Morteani.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morteani, G., Ruggieri, G., Möller, P. et al. Geothermal mineralized scales in the pipe system of the geothermal Piancastagnaio power plant (Mt. Amiata geothermal area): a key to understand the stibnite, cinnabarite and gold mineralization of Tuscany (central Italy). Miner Deposita 46, 197–210 (2011). https://doi.org/10.1007/s00126-010-0316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-010-0316-5

Keywords

Navigation