Skip to main content
Log in

P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: conventional and infrared microthermometric constraints

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Wiluna lode-gold deposits are located in the Archean Wiluna greenstone belt, in the northern sector of the Norseman-Wiluna belt in the Yilgarn Craton of Western Australia. They are hosted in subgreenschist facies meta-basalts, and controlled by the Wiluna strike-slip fault system and associated shear veins and breccias. The 13 individual lode-gold deposits have produced around 115 t Au from 1901 to 1946 and 1986 to today. Historically, they also produced 38.3 t As and 3.5 t Sb. Gold formed in two stages: stage 1 gold-pyrite-arsenopyrite is finely disseminated in the wallrock and breccia fragments, whereas stage 2 gold-stibnite is located in massive shear veins and breccia matrix, as fracture-fill and in banded-colloform textured veins. Stibnite-gold orebodies only occur in some of the deposits (e.g., Moonlight and northern part of the West Lode) and also display a restricted vertical extent, being preserved only in the uppermost 200 m of stibnite-bearing lodes.

Petrographic, conventional, and infrared microthermometric and laser-Raman analysis on stibnite-bearing quartz veins and breccias reveal that the antimony- and gold-rich hydrothermal fluid was of mixed H2O-NaCl-CO2±CH4 type. Microthermometric measurements reveal maximum homogenization temperatures of 340 °C (average 290±25 °C), and a wide range of salinities between 0.2 and 23 eq. wt% NaCl. Aqueous-carbonic fluid inclusions contain variable XCO2+CH4 (0.03 to 0.82), with the carbonic phase containing a maximum XCH4 of 0.21.

Combined petrographic and microthermometric evidence suggests that the fluid inclusion properties reflect fluid immiscibility of a low-salinity, medium XCO2+CH4, homogeneous parent fluid at about 290 °C and pressures between 700 and 1,700 bar. Fluid immiscibility was triggered by cyclic pressure release during fault-zone movement. The decompression (adiabatic cooling) of the hydrothermal fluids shifted the ore fluid to lower temperatures, significantly reduced the degree of stibnite undersaturation, and caused stibnite to precipitate. The deposition of stibnite reduced the ore-fluid H2S concentration, thereby destabilized gold bisulfide complexes in solution, and caused gold precipitation locally. This mechanism explains the intimate spatial association of stibnite and gold in quartz veins and breccias in the stibnite-gold orebodies at Wiluna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Ahfeld F, Schneider-Scherbina A (1964) Los yacimientos minerales y de hidrocarburos de Bolivia. Bolivia Dep Nac Geol Bol 5:1–388

    Google Scholar 

  • Anderson MR, Rankin AH, Spiro B (1992) Fluid mixing in the generation of mesothermal gold mineralization in the Transvaal Sequence, Transvaal, South Africa. Eur J Mineral 4:933–948

    Article  Google Scholar 

  • Aral H (1989) Antimony mineralisation in the northern Murat Dagi (western Turkey). Econ Geol 84:780–787

    Article  Google Scholar 

  • Bailly L, Bouchot V, Bény C, Milési J-P (2000) Fluid inclusion study of stibnite using infrared microscopy; an example from the Brouzils antimony deposit (Vendée, Armorican massif, France). Econ Geol 95:221–226

    Article  Google Scholar 

  • Bakker RJ, Diamond LW (2000) Determination of the composition and molar volume of H2O-CO2 fluid inclusions by microthermometry. Geochim Cosmochim Acta 64:1753–1764

    Article  Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. VPI Press, Blacksburg, Virginia, pp 117–130

    Google Scholar 

  • Boocock CN, Cheshire PE, Killick AM, Maiden KJ, Vearncombe JR (1987) Antimony-gold mineralisation at Monarch Mine, Murchison schist belt Kaapvaal craton. Univ Western Aust Geol Dep Univ Extension 12:81–97

    Google Scholar 

  • Brown KL (1986) Gold deposition from geothermal discharges in New Zealand. Econ Geol 81:979–983

    Article  Google Scholar 

  • Brown PE, Hagemann SG (1995) MacFlinCor and its application to fluids in Archean lode-gold deposits. Geochim Cosmochim Acta 59:3943–3952

    Article  Google Scholar 

  • Buchholz P, Friedrich G, Herzig P (1994) Gold-antimony mineralization in the Zimbabwe Craton: the Indarama mine at Kwekwe and the Belingwe Star mine at Mberengwa. Geol Jahrb D100:343–389

    Google Scholar 

  • Campbell AR, Panter KS (1990) Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michel's Mount and Cligga Head, Cornwall, England. Geochim Cosmochim Acta 54:673–681

    Article  Google Scholar 

  • Chanter SC, Eilu P, Erickson ME, Jones GFP, Mikucki E (1998) Bulletin gold deposit. In: Berkman DA, Mackenzie DH (eds) Geology of Australian and Papua New Guinean mineral deposits. Australas Inst Min Metall Mono 22:105–110

    Google Scholar 

  • Conolly H (1937) Report to accompany programme of development, Wiluna mines. Wiluna Gold Mines, Wiluna, Western Australia, 36 pp

  • Colvine AC, Andrews AJ, Cherry ME, Durocher ME, Fyon AJ, Lavigne MJ Jr, Macdonald AJ, Marmont S, Poulsen KH, Springer JS, Troop DG (1984) An integrated model for the origin of Archean lode gold deposits. Ont Geol Surv Open File Rep 5524, 84 pp

  • Cox SF (1995) Faulting processes at high fluid pressures: an example of fault valve behaviour from the Wattle Gully Fault, Victoria, Australia. J Geophys Res 100:12841–12859

    Article  Google Scholar 

  • Davies DR, Paterson DB, Griffiths DHC (1986) Antimony in South Africa. J S Afr Inst Min Metall 86:173–193

    Google Scholar 

  • Diamond LW (1992) Stability of CO2-clathrate-hydrate+CO2 liquid+CO2 vapour+aqueous KCl-NaCl solutions: experimental determination and application to salinity estimates of fluid inclusions. Geochim Cosmochim Acta 55:273–280

    Article  Google Scholar 

  • Dill HG (1998) Evolution of Sb mineralisation in modern fold belts: a comparison of the Sb mineralisation in the central Andes (Bolivia) and the western Carpathians (Slovakia). Miner Deposita 33:359–378

    Article  Google Scholar 

  • Dill HG, Weiser T, Bernhardt IR, Riera Kilibarda C (1995) The composite gold-antimony deposit at Karma (Bolivia). Econ Geol 90:51–66

    Article  Google Scholar 

  • Dill HG, Pertold Z, Riera Kilibarda C (1997) Sediment-hosted and volcanic-hosted Sb vein mineralisation in the Potosi region, central Bolivia. Econ Geol 92:623–632

    Article  Google Scholar 

  • Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Article  Google Scholar 

  • Dugdale AL, Hagemann SG (2001) The Bronzewing lode gold deposit, Western Australia: P-T-X evidence for fluid immiscibility caused by cyclic decompression in gold-bearing quartz-veins. Chem Geol 173:59–90

    Article  Google Scholar 

  • Fournier RO (1985) The behaviour of silica in hydrothermal solutions. In: Berger BR, Bethke PM (eds) Geology and geochemistry of epithermal systems. Soc Econ Geol Rev Econ Geol 2:45–61

    Google Scholar 

  • Frape SK, Fritz P (1988) Geochemical trends from groundwaters from the Canadian Shields. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Assoc Can Spec Pap 33:19–38

    Google Scholar 

  • Gehrig M (1980) Phasengleichgewichte und pVT-Daten ternärer Mischungen aus Wasser, Kohlendioxid, und Natriumchlorid bis 3 kbar und 500 °C. PhD Thesis, University of Karlsruhe, Hochschul, 149 pp

  • Gokce A, Spiro B (1994) Stable isotope study of antimony deposits in the Muratdagi region, western Turkey. Miner Deposita 29:361–365

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course 31:199

    Google Scholar 

  • Hagemann SG (1993) The Wiluna lode-gold deposits, Western Australia: a case study of a high crustal level Archean lode-gold system. PhD Thesis, University of Western Australia, Nedlands, 181 pp

    Google Scholar 

  • Hagemann SG, Brown PE (1996) Geobarometry in Archean lode gold deposits. Eur J Mineral 8:937–960

    Article  Google Scholar 

  • Hagemann SG, Cassidy KF (2000) Archean orogenic lode gold deposits. Rev Econ Geol 13:9–68

    Google Scholar 

  • Hagemann SG, Groves DI, Ridley JR, Vearncombe JR (1992) The Archaean lode-gold deposits at Wiluna, Western Australia: high-level brittle-style mineralization in a strike-slip regime. Econ Geol 87:1022–1053

    Article  Google Scholar 

  • Hagemann SG, Gebre-Mariam M, Groves DI (1994) Surface water influx in shallow-level Archean lode gold deposits in Western Australia. Geology 22:1067–1070

    Article  Google Scholar 

  • Hagemann SG, Brown PE, Valley JW (1995) Oxygen isotope heterogeneity in gold-bearing paleohydrothermal systems. Geol Soc Am Abstr Programs 27(6):66

    Google Scholar 

  • Hagemann SG, Brown PE, Groves DI, Ridley JR, Valley JW (1996) The Wiluna lode-gold deposits, Western Australia: surface water influx in a shallow level Archean lode-gold system. In: Proc 12th Australian Geological Convention, Perth, pp 160–161

  • Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol 83:197–202

    Article  Google Scholar 

  • Henley RW, Harris RJ, Paterson CJ (1976) Multistage ore genesis in the New Zealand geosyncline, a history of post-metamorphic lode emplacement. Miner Deposita 11:100–196

    Article  Google Scholar 

  • Hutchinson CS (1983) Economic deposits and their tectonic setting. Macmillan, Hong Kong, 365 pp

  • Jacobs GK, Kerrick DM (1981) Methane: an equation of state with application to the ternary system H2O-CO2-CH4. Geochem Cosmochim Acta 45:607–614

    Article  Google Scholar 

  • Kennworthy (2001)

  • Kent AJR, Hagemann SG (1996) Constraints on the timing of gold mineralisation in the Wiluna greenstone belt, Yilgarn craton, Western Australia. Aust J Earth Sci 43:573–588

    Article  Google Scholar 

  • Kennworthy S, Hagemann SG, Love RJ (2001) Structural control and mineralization style of quartz-reef hosted Golden Age goldmine. Wiluna greenston belt, Yilgarn Craton. In Hagemann SG, Neumayr P, Witt WK (eds) World-class goldcamps and deposits in the eastern Yilgarn Craton Western Australia, with special emphasis on the eastern goldfields province. Geol Surv Western Australia Rec 2001/17:177–196

  • Kontak DJ, Horne RJ, Smith PK (1996) Hydrothermal characterization of the West Gore Sb-Au deposit, Meguma Terrane, Nova Scotia, Canada. Econ Geol 91:1239–1262

    Article  Google Scholar 

  • Kouzmanov K, Bailly L, Ramboz C, Rouer O, Bény J-M (2002) Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from Radka epithermal copper deposit, Srednogorie zone, Bulgaria. Mineral Deposita 37:599-613

    Article  Google Scholar 

  • Krüger Y, Diamond LW (2001) P-V-T-X properties of two H2O-CO2-NaCl mixtures up to 850 °C and 500 MPa: a synthetic fluid inclusion study. In: Proc XVI ECROFI Abstr, Faculdade de Ciências do Porto, Dep de Geol, Mem 7:241–244

    Google Scholar 

  • Krupp RE (1988) Solubility of stibnite in hydrogen sulfide solutions, speciation, and equilibrium constants, from 25 to 350 °C. Geochim Cosmochim Acta 52:3005–3015

    Article  Google Scholar 

  • Lindaas SE, Kulis J, Campbell AR (2002) Near-infrared observation and microthermometry of pyrite-hosted fluid inclusions. Econ Geol 97:603–618

    Article  Google Scholar 

  • Lüders V (1996) Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite): metallogenic implications. Econ Geol 91:1462–1468

    Article  Google Scholar 

  • Lüders V, Reutel C (1994) Fluid inclusion studies in sulfosalts from hydrothermal vein deposits of the Harz Mountains by infra-red microscopy. Beih Eur J Mineral 6:364

    Google Scholar 

  • Lüders V, Ziemann M (1999) Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions. Chem Geol 154:169–178

    Article  Google Scholar 

  • Lüders V, Gutzmer J, Beukes NJ (1999) Fluid inclusion studies in cogenetic hematite, hausmannite, and gangue minerals from high-grade manganese ores in the Kalahari manganese field, South Africa. Econ Geol 94:589–595

    Article  Google Scholar 

  • Madu BE, Nesbitt BE, Muehlenbachs K (1990) A mesothermal gold-stibnite-quartz vein occurrence in the Canadian Cordillera. Econ Geol 85:1260–1268

    Article  Google Scholar 

  • Mancano DP, Campbell AR (1995) Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit. Geochim Cosmochim Acta 59:3909–3916

    Article  Google Scholar 

  • Merensky H (1905) The gold deposits of the Murchison range in the north-eastern Transvaal. Trans Geol Soc S Afr 8:42–46

    Google Scholar 

  • Mossman DJ, Leblanc ML, Burzynski JF (1991) Antimony-gold deposits of north Atlantic Acadian-Hercynian domain. Inst Min Metall Trans100:B227–B233

    Google Scholar 

  • Muff R (1978) The antimony deposits in the Murchison Range of northern Transvaal, Republic of South Africa. Monogr Ser Min Deposits 16, 90 pp

    Google Scholar 

  • Nesbitt BE, Muehlenbachs K (1989) Geology, geochemistry, and genesis of mesothermal lode gold deposits of the Canadian Cordillera: evidence for ore formation from evolved meteoric water. Econ Geol 82:553–563

    Google Scholar 

  • Nesbitt BE, Murowchick JB, Muehlenbachs K (1986) Dual origins of lode gold deposits in the Canadian Cordillera. Geology 14:506–509

    Article  Google Scholar 

  • Nesbitt BE, Muehlenbachs K, Murowchic JB (1989) Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera. Econ Geol 84:1489–1506

    Article  Google Scholar 

  • O'Shea PJ, Pertzel BA (1988) The Brunswick gold-antimony mine, Costerfield, Victoria. Geol Soc Austr Abstr Ser 23:282–284

    Google Scholar 

  • Paterson CJ (1986) Controls on gold and tungsten mineralisation in metamorphic-hydrothermal systems, Ontago, New Zealand. Geol Assoc Can Spec Pap 32:25–39

    Google Scholar 

  • Pichavant M, Ramboz C, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data, I. Phase equilibria analysis—a theoretical and geometrical approach. Chem Geol 37:1–27

    Article  Google Scholar 

  • Playter RF (1936) Report on the geology of Wiluna, Western Australia. Wiluna Gold Mines, Wiluna, 58 pp

  • Potter RW (1977) Pressure corrections for fluid inclusion homogenization temperatures based on the volumetric properties of the system NaCl-H2O. USGS J Res 5:603–607

    Google Scholar 

  • Ramboz C, Pichavant M, Weisbrod A (1982) Fluid immiscibility in natural processes: use and misuse of fluid inclusion data, II. Interpretation of fluid inclusion data in terms of immiscibility. Chem Geol 37:29–48

    Article  Google Scholar 

  • Robert F, Kelly WC (1987) Ore-forming fluids in Archean gold-bearing quartz veins at the Sigma mine, Abitibi greenstone belt, Quebec, Canada. Econ Geol 82:1464–1482

    Article  Google Scholar 

  • Robert F, Boullier AM, Firdaous K (1995) Gold-quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophys Res 100(B7):12861–12879

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral 12:643

    Google Scholar 

  • Roedder E, Bodnar RJ (1980) Geologic pressure determinations, from fluid inclusions studies. Annu Rev Earth Planet Sci 8:263–301

    Article  Google Scholar 

  • Rosso KM, Bodnar RJ (1995) Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO2. Geochim Cosmochim Acta 59:3961–3975

    Article  Google Scholar 

  • Seward TM (1989) The hydrothermal chemistry of gold and its implications for ore formation: boiling and conductive cooling as examples. Econ Geol Mon 6:398–404

    Google Scholar 

  • Sibson RH, Robert F, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Steed GM, Morris JH (1986) Gold mineralisation in Ordovician greywackes at Clontibret, Ireland. Geol Assoc Can Spec Pap 32:67–86

    Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions, V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim Cosmochim Acta 52:989–1005

    Article  Google Scholar 

  • Takenouchi S, Kennedy GC (1965) The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Am J Sci 263:445–454

    Article  Google Scholar 

  • Thiery R, Van den Kerkhof AF, Dubessy J (1994) vX properties of CH4-CO2 and CO2-N2 fluid inclusions: modelling for T<31 °C and P>400 bar. Eur J Mineral 6:753–771

    Article  Google Scholar 

  • Wilkinson JJ, Johnston JD (1996) Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation. Geology 24:395–398

    Article  Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64:335–350

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Peter Neumayr for critical discussion about fluid inclusions in Archean lode-gold deposits. This research was initiated while S.G.H. was a postdoctoral fellow at the University of Wisconsin-Madison (USA) and was supported by NSF grant EAR-9305245. Prof. David Groves recognized the significance of the Wiluna deposits and introduced S.G.H. to the Wiluna area. Prof. Phil Brown is thanked for his encouragement, enthusiasm, and valuable scientific input during the postdoctoral project. S.G.H. also acknowledges the Deutsche Forschungsgemeinschaft Habilitantenstipendium 2327/1-1.1-2. The authors also thank the two Mineralium Deposita reviewers for their detailed and insightful review of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Gerd Hagemann.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagemann, S.G., Lüders, V. P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: conventional and infrared microthermometric constraints. Miner Deposita 38, 936–952 (2003). https://doi.org/10.1007/s00126-003-0351-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-003-0351-6

Keywords

Navigation