Skip to main content
Log in

Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Twelve QTL associated with pre-harvest sprouting tolerance were identified using association analysis in wheat. Two markers were validated and a candidate gene TaNAC074 for Qgpf.cas-3B.2 was verified using Agrobacterium-mediated transformation.

Abstract

Pre-harvest sprouting (PHS) is a considerable global threat to wheat yield and quality. Due to this threat, breeders must identify quantitative trait loci (QTL) and genes conferring PHS-tolerance (PHST) to reduce the negative effects of PHS caused by low seed dormancy. In this study, we evaluated a panel of 302 diverse wheat genotypes for PHST in four environments and genotyped the panel with a high-density wheat 660 K SNP array. By using a genome-wide association study (GWAS), we identified 12 stable loci significantly associated with PHST (P < 0.0001), explaining 3.34 − 9.88% of the phenotypic variances. Seven of these loci co-located with QTL and genes reported previously. Five loci (Qgpf.cas-3B.2, Qgpf.cas-3B.3, Qgpf.cas-3B.4, Qgpf.cas-7B.2, and Qgpf.cas-7B.3), located in genomic regions with no known PHST QTL or genes, are likely to be new QTL conferring PHST. Additionally, two molecular markers were developed for Qgpf.cas-3A and Qgpf.cas-7B.3, and validated using a different set of 233 wheat accessions. Finally, the PHST-related function of candidate gene TaNAC074 for Qgpf.cas-3B.2 was confirmed by CAPS (cleaved amplified polymorphic sequences) marker association analysis in 233 wheat accessions and by expression and phenotypic analysis of transgenic wheat. Overexpression of TaNAC074 significantly reduced seed dormancy in wheat. This study contributes to broaden the genetic basis and molecular marker-assisted breeding of PHST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn-de VH, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appleford N, Evans DJ, Lenton JR, Gaskin P, Croker SJ, Devos KM, Phillips AL, Hedden P (2006) Function and transcript analysis of gibberellin-biosynthetic enzymes in wheat. Planta 223:568–582

    Article  CAS  PubMed  Google Scholar 

  • Battenfield SD, Singh RP, Poland J, Pea RJ, Fritz AK (2013) Genomic selection for end-use quality traits in CIMMYT spring wheat. International Plant and Animal Genome Conference XXI 2013

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrill P, Harrington SA, Uauy C (2017) Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3genes Genom Genet 7:3019–3029

  • Chang C, Zhang HP, Feng JM, Yin B, Si HQ, Ma CX (2010) Identifying alleles of Viviparous-1B associated with pre-harvest sprouting in micro-core collections of Chinese wheat germplasm. Mol Breed 25:481–490

    Article  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen JL, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat ( Triticum aestivum L.). BMC Genomics 11:727–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino R, Noh B, Noh YS (2012) Control of seed germination by light-induced histone arginine demethylation activity. Dev Cell 22:736–748

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Zhang N, Fan XL, Zhang W, Yang LJ, Pan RQ, Chen M, Han J, Zhao XQ, Ji J, Tong YP, Zhang HX, Jia JZ, Zhao GY, Li JM (2017) Utilization of a Wheat 660K SNP array derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:3788–3800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dekkers BJW, Pearce S, Van Bolderen-Veldkamp RP, Marshall A, Widera P, Gilbert J, Drost HG, Bassel GW, Muller K, King JR, Wood AT, Grosse I, Quint M, Krasnogor N, Leubner-Metzger G, Holdsworth MJ, Bentsink L (2013) Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol 163:205–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. P Natl Acad Sci USA 77:7347–7351

    Article  CAS  Google Scholar 

  • Dong Y, Liu JD, Zhang Y, Geng HW, Rasheed A, Xiao YG, Cao SH, Fu LP, Yan J, Wen WE, Zhang Y, Jing RL, Xia XC, He ZH (2016) Genome-wide association of stem water soluble carbohydrates in bread wheat. PLoS ONE 11:e0164293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn P, Böse J, Edler S, Lengeling A (2008) Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containingproteins. BMC Genomics 9:293–319

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He S, Schulthess AW, Mirdita V, Zhao YS, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641–651

    Article  CAS  PubMed  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122:1561–1576

    Article  CAS  PubMed  Google Scholar 

  • Honore T, Ngonkeu EL, Bélanger S, Djocgoué PF, Abed A, Torkamaneh D, Boyle B, Tsimi P, Tadesse W, Jean M, Belzile FJ (2021) GWAS identifies a wheat orthologue of the rice D11 gene as an important contributor to grain size in an international collection of hexaploid wheat. Res Sq. https://doi.org/10.21203/rs.3.rs-244194/v1

    Article  Google Scholar 

  • Imtiaz M, Ogbonnaya FC, Oman J, Ginkel MV (2008) Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics 178:1725–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida Y, Tsunashima M, Hiei Y, Komari T (2015) Wheat (Triticum aestivum L.) transformation using immature embryos. Springer, New York, New York, pp 189–198

    Google Scholar 

  • Jaiswal V, Mir RR, Mohan A, Balyan HS, Gupta PK (2012) Association mapping for pre-harvest sprouting tolerance in common wheat (Triticum aestivum L.). Euphytica 188:89–102

    Article  CAS  Google Scholar 

  • Jiang H, Zhao LX, Chen XJ, Cao JJ, Wu ZY, Liu K, Zhang C, Wei WX, Xie HY, Li L, Gan YG, Lu J, Chang C, Zhang HP, Xia XC, Xiao SH, Ma CX (2018) A novel 33-bp insertion in the promoter of TaMFT-3A is associated with pre-harvest sprouting resistance in common wheat. Mol Breed 38:69–83

    Article  CAS  Google Scholar 

  • Knox RE, Clarke FR, Clarke JM, Fox SL, Pauw RM, Singh AK (2012) Enhancing the identification of genetic loci and transgressive segregants for preharvest sprouting resistance in a durum wheat population. Euphytica 186:193–206

  • Lei L, Zhu XK, Wang SW, Zhu MR, Carver BF, Yan LL (2013) TaMFT-A1 is associated with seed germination sensitive to temperature in winter wheat. PLoS ONE 8:e73330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhou H, Shi XL, Yu B, Zhou Y, Chen SL, Wang YF, Peng Y, Meyer RC, Smeekens SC, Teng S (2014) The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signaling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genet 10:e1004213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin M, Zhang DD, Liu SB, Zhang GR, Yu JM, Fritz AK, Bai GH (2016) Genome-wide association analysis on pre-harvest sprouting resistance and grain color in U.S. winter wheat. BMC Genomics 17:794–810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin Y, Liu SH, Liu YX, Liu YJ, Chen GY, Xu J, Deng M, Jiang QT, Wei YM, Lu YL, Zheng YL (2017) Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 40:620–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu SB, Cai SB, Graybosch R, Chen CX, Bai GH (2008) Quantitative trait loci for resistance to pre-harvest sprouting in US hard white winter wheat. Theor Appl Genet 117:691–699

    Article  CAS  PubMed  Google Scholar 

  • Liu JD, He ZH, Rasheed A, Wen WE, Yan J, Zhang PZ, Wan YX, Zhang Y, Xie CJ, Xia XC (2017) Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol 17:220–232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu SB, Sehgal SK, Li JR, Lin M, Trick HN, Yu JM, Gill BS, Bai GH (2013) Cloning and characterization of a critical regulator for pre-harvest sprouting in wheat. Genetices 195:263–273

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3: Genes Genom Genetics 5(3):449–65

  • Mergby D, Hanin M, Saidi MN (2021) The durum wheat NAC transcription factor TtNAC2A enhances drought stress tolerance in Arabidopsis. Environ Exp Bot 186:e104439

    Article  CAS  Google Scholar 

  • Miura H, Sato N, Kato K, Amano Y, Mcintosh RA (2010) Detection of chromosomes carrying genes for seed dormancy of wheat using the backcross reciprocal monosomic method. Plant Breed 121:394–399

    Article  Google Scholar 

  • Murozuka E, Massange-Sánchez JA, Nielsen K, Gregersen PL, Braumann I (2018) Genome wide characterization of barley NAC transcription factors enables the identification of grain-specific transcription factors exclusive for the Poaceae family of monocotyledonous plants. PLoS ONE 13:e0209769

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakamura S, Abe F, Kawahigashi H, Nakazono K, Tagiri A, Matsumoto T, Utsugi S, Ogawa T, Handa H, Ishida H, Mori M, Kawaura K, Ogihara Y, Miura H (2011) A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. Plant Cell 23:3215–3229

  • Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247

    Article  CAS  PubMed  Google Scholar 

  • Pang YL, Liu CX, Wang DF, Amand PS, Bernardo A, Li WH, He F, Li LZ, Wang LM, Yuan XF, Dong L, Su Y, Zhang HR, Zhao M, Liang YL, Jia HZ, Shen XT, Lu Y, Jiang HM, Wu YY, Li AF, Wang HG, Kong LR, Bai GH, Liu SB (2020) High-resolution genome-wide association study identifies genomic regions and candidate genes for important agronomic traits in wheat. Mol Plant 13:1311–1327

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Ren XB, Lan XJ, Liu DC, Wang JI, Zheng YL (2008) Mapping QTLs for pre-harvest sprouting tolerance on chromosome 2D in a synthetic hexaploid wheat × common wheat cross. J Appl Genet 49:333–341

  • Song S, He HZ, Guhl K, Veldkamp MVB, Buijs G, Willems LAJ, Bentsink L (2021) DELAY OF GERMINATION 6, encoding the ANAC060 transcription factor, inhibits seed dormancy. BioRxiv. https://doi.org/10.1101/2021.05.03.442418

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun CW, Dong ZD, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Li WQ, Sun JQ, Chen KM (2021) Cereal pre-harvest sprouting: a global agricultural disaster regulated by complex genetic and biochemical mechanisms. J Exp Bot 72:2857–2876

    Article  CAS  PubMed  Google Scholar 

  • Torada A, Koike M, Ogawa T, Takenouchi Y, Tadamura K, Wu JZ, Matsumoto T, Kawaura K, Ogihara Y (2016) A causal gene for seed dormancy on wheat chromosome 4A encodes a MAP kinase kinase. Curr Biol 26:782–787

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liu HY, Du LP, Ye XG (2016a) Generation of marker-free transgenic hexaploid wheat via an agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnol J 15:614–623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Wang XL, Meng JY, Zhang YJ, He ZH, Yang Y (2016b) Characterization of Tamyb10 allelic variants and development of STS marker for pre-harvest sprouting resistance in Chinese bread wheat. Mol Breed 36:148–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei J, Cao H, Liu JD, Zuo JH, Fang Y, Lin CT, Sun RZ, Li WL, Liu YX (2019) Insights into transcriptional characteristics and homoeolog expression bias of embryo and de-embryonated kernels in developing grain through RNA-Seq and Iso-Seq. Funct Integr Genomic 19:1–14

    Article  CAS  Google Scholar 

  • Xia N, Zhang G, Sun YF, Zhu L, Xu LS, Chen XM, Liu B, Yu YT, Wang XJ, Huang LL, Kang ZS (2010) TaNAC8, a novel NAC transcription factor gene in wheat, responds to stripe rust pathogen infection and abiotic stresses. Physiol Mol Plant Pathol 74(5–6):394–402

    Article  CAS  Google Scholar 

  • Yu XF, Han JP, Wang EF, Xiao J, Hu R, Yang GX, Yu HGY (2019) Genome-wide identification and homoeologous expression analysis of PP2C genes in wheat (Triticum aestivum L.). Front Genet 10:561–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu B, Wang YJ, Zhou H, Li P, Liu CM, Chen SL, Yu P, Zhang YJ, Sheng T (2020) Genome-wide binding analysis reveals that ANAC060 directly represses sugar induced transcription of ABI5 in Arabidopsis. Plant J 103:965–979

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Geng HM, Cui ZC, Wang HY, Liu DQ (2021) Functional analysis of wheat NAC transcription factor, TaNAC069, in regulating resistance of wheat to leaf rust fungus. Front Plant Sci 12:e604797

    Article  Google Scholar 

  • Zhu YL, Wang SX, Zhang HP, Zhao LX, Wu ZY, Jiang H, Cao JJ, Liu K, Qin M, Lu J, Sun GL, Xia XC, Chang C, Ma CX (2016) Identification of major loci for seed dormancy at different post-ripening stages after harvest and validation of a novel locus on chromosome 2AL in common wheat. Mol Breed 36:174–186

    Article  CAS  Google Scholar 

  • Zhu YL, Wang SX, Wei WX, Xie HY, Liu K, Zhang C, Wu ZY, Jiang H, Cao JJ, Zhao LX, Lu J, Zhang HP, Chang C, Xia XC, Xiao SH, Ma CX (2019) Genome-wide association study of pre-harvest sprouting tolerance using a 90K SNP array in common wheat (Triticum aestivum L.). Theor Appl Genet 132:2947–2963

    Article  CAS  PubMed  Google Scholar 

  • Zuo JH, Lin CT, Cao H, Chen FY, Liu YX, Liu JD (2019) Genome-wide association study and quantitative trait loci mapping of seed dormancy in common wheat (Triticum aestivum L.). Planta 250:187–198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management and staff of the Liu lab and Key Laboratory of Plant Molecular Physiology, Beijing, China, for field management and technical assistance. The authors would like to thank Dr. Wim J.J. Soppe for assistance with English language editing of this manuscript. We also thank the reviewers and journal editors for thoughtful and constructive comments.

Funding

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no.XDA24010104) and the National Natural Science Foundation of China (No.32001431; Joint Fund Projects, U20A2033; No. 31870305).

Author information

Authors and Affiliations

Authors

Contributions

HJ, YF, LG, and YL conceived the project; FL and LG provided materials; HJ, HC and YL acquired funding; HJ, YF, HC, CY and JW designed the plot layout and planned the study; HJ, YF, HC, CY, SL, XW, FG and JW performed field activities; HJ, YF, FG, HC, SL, XW and JW measured seed germination; HJ, YF and DY analyzed the data; HJ wrote a draft of the manuscript; LG and YL supervised the study. All authors reviewed, edited, and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Li-feng Gao or Yong-xiu Liu.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1057 KB)

Supplementary file2 (XLSX 663 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Fang, Y., Yan, D. et al. Genome-wide association study reveals a NAC transcription factor TaNAC074 linked to pre-harvest sprouting tolerance in wheat. Theor Appl Genet 135, 3265–3276 (2022). https://doi.org/10.1007/s00122-022-04184-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04184-y

Navigation