Skip to main content
Log in

GW10, a member of P450 subfamily regulates grain size and grain number in rice

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A quantitative trait locus GW10 is located on Chromosome 10 by map-based cloning, which encodes a P450 Subfamily protein. The GW10 regulates grain size and grain number in rice involved in the BR pathway.

Abstract

Grain size and grain number play extremely important roles in rice grain yield. Here, we identify GW10, which encodes a P450 subfamily protein and controls grain size and grain number by using Lemont (tropical japonica) as donor parent and HJX74 (indica) as recipient parent. The GW10 locus was mapped into a 14.6 kb region in HJX74 genomic on the long arm of chromosome 10. Lower expression of the gw10 in panicle is contributed to the shorter and narrower rice grain, and the increased number of grains per panicle. In contrast, overexpression of GW10 is contributed to longer and wider rice grain. Furthermore, the higher expression levels of some of the brassinosteroid (BR) biosynthesis and response genes are associated with the NIL-GW10. The sensitivity of the leaf angle to exogenous BR in NIL-GW10 is lower than that in NIL-gw10 and in the KO-GW10, which implied that the GW10 should involve in the brassinosteroid-mediated regulation of rice grain size and grain number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

cM:

Centimorgan

QTL:

Quantitative trait loci

SSR:

Simple sequence repeats

SSSL:

Single segment substitution line

References

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11:344–350

    Article  CAS  PubMed  Google Scholar 

  • Babineau M, Mahmood K, Mathiassen SK, Kudsk P, Kristensen M (2017) De novo transcriptome assembly analysis of weed Apera spica-venti from seven tissues and growth stages. BMC Genomics 18:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li X, Cheng C, Wang Y, Qin M, Zhu H, Zeng R, Fu X, Liu Z, Zhang G (2015) Characterization of epistatic interaction of QTLs LH8 and EH3 controlling heading date in rice. Sci Rep 4:4263

    Article  Google Scholar 

  • Cui Y, Peng Y, Zhang Q, Xia S, Ruan B, Xu Q, Yu X, Zhou T, Liu H, Zeng D, Zhang G, Gao Z, Hu J, Zhu L, Shen L, Guo L, Qian Q, Ren D (2021) Disruption of EARLY LESION LEAF 1, encoding a cytochrome P450 monooxygenase, induces ROS accumulation and cell death in rice. Plant J 105:942–956

    Article  CAS  PubMed  Google Scholar 

  • Fang N, Xu R, Huang L, Zhang B, Duan P, Li N, Luo Y, Li Y (2016) SMALL GRAIN 11 controls grain size, grain number and grain yield in rice. Rice 9:64

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang C, Li L, He R, Wang D, Wang M, Hu Q, Ma Q, Qin K, Feng X, Zhang G, Fu X, Liu Z (2019) Identification of S23 causing both interspecific hybrid male sterility and environment-conditioned male sterility in rice. Rice 12:10

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu X, Li W, Zhu W, Zhu H, Liu Z, Luan X, Dai Z, Liu G, Zhang Z, Zeng R, Tang G, Fu X, Wang S, Zhang G (2016) Overcoming inter-subspecific hybrid sterility in rice by developing indica-compatible japonica lines. Sci Rep 6:26878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Yang Y, Liu M, Meng Q, Zeng X, Dong L, Tang S, Gu M, Yan C (2014) Clustered spikelets 4, encoding a putative cytochrome P450 protein CYP724B1, is essential for rice panicle development. Chin Sci Bull 59:4050–4059

    Article  CAS  Google Scholar 

  • Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci 98:2065–2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Sheldon CC, Olive MR, Walker AR, Zeevaart JA, Peacock WJ, Dennis ES (1998) Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc Natl Acad Sci 95:9019–9024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Lu S, Wang M, Wang H, He H, Sun J, Sun L, Liu J, Liu X, Jiang L, Xin X, Kong W, Chu C, Xue H, Yang J, Luo X (2018b) A novel QTL qTGW3 encodes the GSK3/SHAGGY-Like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant 11:736–749

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Meng X, Liu Q, Li J, Wang K (2018a) Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice. Plant Biotechnol J 16:292–297

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Wang Y, Fang Y, Zeng L, Xu J, Yu H, Shi Z, Pan J, Zhang D, Kang S, Zhu L, Dong G, Guo L, Zeng D, Zhang G, Xie L, Xiong G, Li J, Qian Q (2015) A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant 8:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–711

    Article  CAS  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Li F, Gao Y, Wu B, Cai Q, Zhan P, Yang W, Shi W, Li X, Yang Z, Quan T, Luan X, Zhang G, Wang S (2021) High-Quality de novo genome assembly of Huajingxian74, a recipient parent of single segment substitution lines. Rice Sci 28:109–113

    Article  Google Scholar 

  • Li F, Liu W, Tang J, Chen J, Tong H, Hu B, Li C, Fang J, Chen M, Chu C (2010) Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20:838–849

    Article  PubMed  Google Scholar 

  • Li H, Wang H, Jang S (2017) Rice lamina joint inclination assay. Bio-protocol 7:e2409

    Article  PubMed  PubMed Central  Google Scholar 

  • Li N, Xu R, Li Y (2019) Molecular networks of seed size control in plants. Annu Rev Plant Biol 70:435–463

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J (2017) GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants 3:17043

    Article  CAS  PubMed  Google Scholar 

  • Luan X, Dai Z, Yang W, Tan Q, Lu Q, Guo J, Zhu H, Liu G, Wang S, Zhang G (2019) Breeding by design of CMS lines on the platform of SSSL library in rice. Mol Breed 39:126

    Article  Google Scholar 

  • Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q (2010) Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci 107:19579–19584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M (2012) Impacts of diversification of cytochrome P450 on plant metabolism. Biol Pharm Bull 35:824–832

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Ohta D (2010) Diversification of P450 genes during land plant evolution. Annu Rev Plant Biol 61:291–315

    Article  CAS  PubMed  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM, Reichhart DW, Bak S (2004) Comparative genomics of rice and arabidopsis. analysis of 727 cytochrome p450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang L, Gao JP, Lin HX (2012) The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22:1666–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi CL, Dong NQ, Guo T, Ye WW, Shan JX, Lin HX (2020) A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J 103:1174–1188

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Rao Y, Xu J, Hu S, Fang Y, Yu H, Pan J, Liu R, Ren D, Wang X (2015) Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Sci Bull 60:905–915

    Article  CAS  Google Scholar 

  • Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J, Shangguan Y, Chen E, Gong C, Zhao Q, Jing Y, Zhao Y, Li Y, Cui L, Fan D, Lu Y, Weng Q, Wang Y, Zhan Q, Liu K, Wei X, An K, An G, Han B (2016) OsSPL13 controls grain size in cultivated rice. Nat Genet 48:447–456

    Article  CAS  PubMed  Google Scholar 

  • Song X, Huang W, Shi M, Zhu M, Lin H (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu J, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Natl Acad Sci 112:76–81

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Wang C, Luan X, Zheng L, Ni Y, Yang W, Yang Z, Zhu H, Zeng R, Liu G, Wang S, Zhang G (2021) Dissection of closely linked QTLs controlling stigma exsertion rate in rice by substitution mapping. Theor Appl Genet 134:1253–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan Q, Zou T, Zheng M, Ni Y, Luan X, Li X, Yang W, Yang Z, Zhu H, Zeng R, Liu G, Wang S, Fu X, Zhang G (2020) Substitution mapping of the major quantitative trait loci controlling stigma exsertion rate from Oryza glumaepatula. Rice 13:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome p450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang C, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) BRASSINOSTEROID UPREGULATED1, encoding a Helix-Loop-Helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C (2012) DWARF and LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice. Plant Cell 24:2562–2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Wang Y, Sun A, Bello B, Ni S, Zhang J (2018) Notched belly grain 4, a novel allele of dwarf 11, regulates grain shape and seed germination in rice (Oryza sativa L.). Int J of Mol Sci 19:4069

    Article  Google Scholar 

  • Wang X, Jin L, Zhu H, Wang S, Zhang G, Liu G (2018) QTL epistatic analysis for yield components with single-segment substitution lines in rice. Plant Breed 137:346–354

    Article  CAS  Google Scholar 

  • Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Fu Y, Zhao S, Gu P, Zhu Z, Sun C, Tan L (2016) CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Liu X, Wang M, Meyer RS, Luo X, Ndjiondjop M, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing RA, Zhu Z (2017) A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants 3:17064

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Jin L, Zhu H, Wang S, Zhang G, Liu G (2018) Analysis of epistasis among QTLs on heading date based on single segment substitution lines in rice. Sci Rep 8:3059

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhang C, Lu Y, Jin J, Wang X (2011) The Mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q, Abdul Rehman RM, Li J, Zhang H, Li Z (2018) Alternative splicing of OsLG3b controls grain length and yield in japonica rice. Plant Biotechnol J 16:1667–1678

    Article  CAS  PubMed Central  Google Scholar 

  • Zhang GQ (2019) The platform of breeding by design based on the SSSL library in rice. Hereditas (beijing) 41:754–760

    Google Scholar 

  • Zhao D, Li Q, Zhang C, Zhang C, Yang Q, Pan L, Ren X, Lu J, Gu M, Liu Q (2018) GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun 9:1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Tao Y, Zhu J, Miao J, Liu J, Liu Y, Yi C, Yang Z, Gong Z, Liang G (2017a) GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice cultivar. Rice 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xie Y, Cai J, Liu C, Zhu H, Jiang R, Zhong Y, Zhang G, Tan B, Liu G, Fu X, Liu Z, Wang S, Zhang G, Zeng R (2017b) Substitution mapping of QTLs controlling seed dormancy using single segment substitution lines derived from multiple cultivated rice donors in seven cropping seasons. Theor Appl Genet 130:1191–1205

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Key Projects of Basic Research and Applied Basic Research of Guangdong Province (2019B030302006) and the National Natural Science Foundation of China (32072040).

Author information

Authors and Affiliations

Authors

Contributions

SW and GZ designed and supervised works. PZ performed most of the experiments, analyzed experimental data and prepared the draft of manuscript. XW, XW, ZX, SM, SL and FL conducted a part of experiments. SB, ZL, HZ and GL developed the materials. SW wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guiquan Zhang or Shaokui Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Takuji Sasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1990 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, P., Wei, X., Xiao, Z. et al. GW10, a member of P450 subfamily regulates grain size and grain number in rice. Theor Appl Genet 134, 3941–3950 (2021). https://doi.org/10.1007/s00122-021-03939-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03939-3

Navigation