Skip to main content
Log in

Identification of a recessive gene YrZ15-1370 conferring adult plant resistance to stripe rust in wheat-Triticum boeoticum introgression line

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel recessive gene YrZ15-1370 derived from Triticum boeoticum confers adult–plant resistance to wheat stripe rust.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult–plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, tentatively designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here could be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed S, Bux H, Rasheed A, Gul Kazi A, Rauf A, Mahmood T, Mujeeb-kazi A (2014) Stripe rust resistance in Triticum durum-T. monococcum and T. durum-T. urartu amphiploids. Australas Plant Path 43:109–113

    Article  CAS  Google Scholar 

  • Bai BB, Liu TG, Liu B, Gao L, Chen WQ (2018) High relative parasitic fitness of G22 derivatives is associated with the epidemic potential of wheat stripe rust in China. Plant Dis 102:483–487

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds MP (ed) Climate change and crop production. CABI, London, pp 115–138

    Chapter  Google Scholar 

  • Chen XM, Kang ZS (2017) Stripe rust. Springer, Netherlands

    Book  Google Scholar 

  • Chen X, Line RF (1995) Gene number and heritability of wheat cultivars with durable, high-temperature, adult–plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Chen SS, Rouse MN, Zhang WJ, Zhang XQ, Guo Y, Briggs J, Dubcovsky J (2020) Wheat gene Sr60 encodes a protein with two putative kinase domains that confers resistance to stem rust. New Phytol 225(2):948–959

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Gole RK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116(3):313–324

    Article  CAS  PubMed  Google Scholar 

  • Chhuneja P, Yadav B, Stirnweis D, Hurni S, Kaur S, Elkot AFA, Keller B, Wicker T, Sehgal S, Gill BS, Singh K (2015) Fine mapping of powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 in Triticum boeoticum (Boiss.) using the shotgun sequence assembly of chromosome 7AL. Theor Appl Genet 128(10):2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  • El-Bedewy R, Robbelen G (1982) Chromosomal location and change of dominance of a gene for resistance against yellow rust, Puccinia striiformis West., in wheat Triticum aestivum L. Zeitschr. Pflanzenzuchtung 89:145–157

    Google Scholar 

  • Elkot AFA, Parveen C, Satinder K, Saluja M, Keller B, Singh K (2015) Marker assisted transfer of two powdery mildew resistance genes PmTb7A.1 and PmTb7A.2 from Triticum boeoticum (Boiss.) to Triticum aestivum (L.). Plos One 10(6):e128297

    Article  CAS  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerechter-Amitai ZK, Wahl I, Vardi A, Zohary D (1971) Transfer of stem rust seedling resistance from wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica 20(2):281–285

    Article  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis 103(6):1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Gill RS, Dhaliwal HS, Multani DS (1988) Synthesis and evaluation of Triticum durumT. monococcum amphiploids. Theor Appl Genet 75:912–916

    Article  Google Scholar 

  • Han FP, Liu B, Fedak G, Liu ZH (2004) Genomic constitution and variation in five partial amphiploids of wheat-Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet 109(5):1070–1076

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Zhang LQ, Zhao LB, Dai SF, Li AL, Yang WY, Xie D, Li QC, Ning SZ, Yan ZH, Wu BH, Lan XJ, Yuan ZW, Huang L, Wang JR, Zheng K, Chen WS, Yu M, Chen XJ, Chen MP, Wei YM, Zhang HG, Kishii M, Hawkesford MJ, Mao L, Zheng YL, Liu DC (2019) A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theor Appl Genet 132:2285–2294

    Article  CAS  PubMed  Google Scholar 

  • He Y, Feng LH, Jiang Y, Zhang LQ, Yan J, Zhao G, Wang JR, Chen GY, Wu BH, Liu DC, Huang L, Fahima T (2020) Distribution and nucleotide diversity of Yr15 in wild emmer populations and Chinese wheat germplasm. Pathogens 9:212

    Article  CAS  PubMed Central  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden M, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122(1):239–249

    Article  PubMed  Google Scholar 

  • Hu X, Li J, Wang Y, Wang B, Li Q, Kang Z, Yang M, Peng Y, Liu T, Chen W, Xu X (2012) Race composition of Puccinia striiformis f. sp. tritici in Tibet, China. Plant Dis 96:1615–1620

    Article  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:7191

    Article  CAS  Google Scholar 

  • Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen SS, Feng LH, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun 9(1):3735

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119(5):889–898

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lebedeva TV, Peusha HO (2006) Genetic control of the wheat Triticum monococcum L. resistance to powdery mildew. Russ J Genet 42:60–66

    Article  CAS  Google Scholar 

  • Li Q, Ma D, Li Q, Fan Y, Shen X, Jing J, Kang Z (2016) Genetic analysis and molecular mapping of a stripe rust resistance gene in Chinese wheat differential Guinong22. J Phytopathol 164(7–8):476–484

    Article  CAS  Google Scholar 

  • Li JB, Dundas I, Dong CM, Li GR, Trethowan R, Yang ZJ, Hoxha S, Zhang P (2020a) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Shi XH, Hu JH, Wu PP, Qiu D, Qu YF, Xie JZ, Wu QH, Zhang HJ, Yang L, Liu HW, Zhou Y, Liu ZY, Li HJ (2020b) Identification of a recessive gene PmQ conferring resistance to powdery mildew in wheat landrace Qingxinmai using BSR-Seq analysis. Plant Dis 104(3):743–751

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the causes of stripe rust of wheat) in North America, 1968–1987. Technical Bulletin 1788. United State Department of Agriculture

  • Ling HQ, Ma B, Shi XL, Liu H, Dong LL, Sun H, Cao YH, Gao Q, Zheng SS, Li Y, Yu Y, Du HL, Qi M, Lu HW, Yu H, Cui Y, Wang N, Chen CL, Wu HL, Zhao Y, Zhang JC, Li YW, Zhou WJ, Zhang BR, Hu WJ, Eijk MJ, Tang JF, Witsenboer HM, Zhao SC, Li ZS, Wang DW, Liang CZ (2018) Genome sequence of the progenitor of wheat a subgenome Triticum urartu. Nature 557(7705):424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 3:317–321

    Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1997) Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica 94:279–286

    Article  Google Scholar 

  • Marais GF, Mccallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from aegilops sharonensis. Euphytica 149(3):373–380

    Article  Google Scholar 

  • Marais F, Marais A, Mccallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49(3):871–879

    Article  CAS  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Xia XC (2017) Catalogue of gene symbols for wheat. Annu Wheat Newsl 2017(Suppl):1–20

    Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, KernytskyA GK, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman A, Hussain A, Adnan M, Ifnan MK, Furqan AM, Madiha Z, Ali KK, He SL (2019) A novel MYB transcription factor CaPHL8 provide clues about evolution of pepper immunity against soil borne pathogen. Microb Pathogenesis 137:103758

    Article  Google Scholar 

  • Paull JG, Pallotta MA, Langridge P, The TT (1994) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeoticum. Theor Appl Genet 89:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127(2):317–324

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Li SR, Xia XC, Zhou Q, He YJ, Wei YM, Zheng YL, He ZH (2015) Molecular mapping of a recessive stripe rust resistance gene yrMY37 in Chinese wheat cultivar Mianmai 37. Mol Breed 35(3):97

    Article  CAS  Google Scholar 

  • Rey E, Molnár I, Doležel J (2015) Genomics of wild relatives and alien introgressions. In: Molnár-Láng M, Ceoloni C, Doležel J (eds) Alien introgression in wheat. Springer, Switzerland

    Google Scholar 

  • Shi AN, Leath S, Murphy JP (1998) A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology 88:144–147

    Article  CAS  PubMed  Google Scholar 

  • Singh H, Grewal TS, Dhaliwal HS, Pannu PPS, Bagga PPS (1998) Sources of leaf rust and stripe rust resistance in wild relatives of wheat. Crop Improv 25:26–33

    Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • The TT (1973) Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nat New Biol 241(112):256

    Article  CAS  PubMed  Google Scholar 

  • The TT, McIntosh RA (1975) Cytogenetical studies in wheat VIII. Telocentric mapping and linkage studies involving Sr22 and other genes in chromosome 7AL. Aust J Biol Sci 28(6):531–538

    Article  Google Scholar 

  • Vasu K, Harjit-Singh CP, Singh S, Dhaliwal HS (2000) Molecular tagging of Karnal bunt resistance genes of Triticum monococcum transferred to Triticum aestivum L. Crop Improv 27:33–42

    Google Scholar 

  • Wang J, Liu C, Guo XR, Wang K, Du LP, Lin ZS, Ye XG (2019a) Development and genetic analysis of wheat double substitution lines carrying Hordeum vulgare 2H and Thinopyrum intermedium 2Ai-2 chromosomes. Crop J 7(2):163–175

    Article  Google Scholar 

  • Wang LC, Tang XR, Wu JH, Shen C, Dai MF, Wang QL, Zeng QD, Kang ZS, Wu YF, Han DJ (2019b) Stripe rust resistance to a burgeoning Puccinia striiformis f. sp. tritici race CYR34 in current Chinese wheat cultivars for breeding and research. Euphytica 215:68

    Article  CAS  Google Scholar 

  • Wang Y, Xie JZ, Zhang HZ, Guo BM, Ning SZ, Chen YX, Lu P, Wu QH, Li MM, Zhang DY, Guo GH, Zhang Y, Liu DC, Zou SK, Tang JW, Zhao H, Wang XC, Cao TJ, Yin GH, Liu ZY (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201

    Article  CAS  PubMed  Google Scholar 

  • Wellings C, Bariana H (2004) Assessment scale for recording stripe rust responses in field trials. Cereal Rust Report Season 2004. Plant Breeding Institute-Cereal Rust Laboratory, University of Sydney 2:1–2

    Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historic and current threats. Euphytica 179(1):129–141

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93(2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Yang EN, Li GR, Li LR, Zhang ZY, Yang WY, Peng YL, Zhu YQ, Yang ZJ, Rosewarne GM (2016) Characterization of stripe rust resistance genes in the wheat cultivar Chuanmai45. Int J Mol Sci 17(4):601

    Article  PubMed Central  CAS  Google Scholar 

  • Zhao LB, Ning SZ, Yi YJ, Zhang LQ, Yuan ZW, Wang JR, Zheng YL, Hao M, Liu DC (2018) Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics 19:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang LQ, Yen Y, Zheng YL, Liu DC (2007) Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex Plant Reprod 20:159–166

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31671682, 31671689, 31801360).

Author information

Authors and Affiliations

Authors

Contributions

D.C. L., L.Z., L.H., M.H., Z.Y., and S.N. designed the experiments. M.Z., X.L., T.P., D.W., D.Y.L., X.J.C., B.J., H.L., and X.C. performed the experiments. D.C.L., L.Z., L.H., M.H., and M.Z. discussed results and wrote the paper.

Corresponding authors

Correspondence to Lin Huang or Lianquan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Lingrang Kong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, X., Peng, T. et al. Identification of a recessive gene YrZ15-1370 conferring adult plant resistance to stripe rust in wheat-Triticum boeoticum introgression line. Theor Appl Genet 134, 2891–2900 (2021). https://doi.org/10.1007/s00122-021-03866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03866-3

Navigation