Skip to main content
Log in

Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Major and environmentally stable QTL for flag leaf-related traits in wheat were identified and validated across ten environments using six populations with different genetic backgrounds.

Abstract

Flag leaf size and posture are two important factors of “ideotype” in wheat. Despite numerous studies on genetic analysis of flag leaf size including flag leaf length (FLL), width (FLW), area (FLA) and the ratio of length/width (FLR), few have focused on flag leaf posture including flag leaf angle (FLANG), opening angle (FLOA) and bend angle (FLBA). Further, the numbers of major, environmentally stable and verified genetic loci for flag leaf-related traits are limited. In this study, QTL for FLL, FLW, FLA, FLR, FLANG, FLOA and FLBA were identified based on a recombinant inbred line population together with values from up to ten different environments. Totally, eight major and stably expressed QTL were identified. Three co-located chromosomal intervals for seven major QTL were identified. The five major QTL QFll.sicau-5B.3 and QFll.sicau-2D.3 for FLL, QFlr.sicau-5B for FLR, QFlw.sicau-2D for FLW and QFla.sicau-2D for FLA were successfully validated by the tightly linked Kompetitive Allele Specific PCR (KASP) markers in the other five populations with different genetic backgrounds. A few genes related to leaf growth and development in intervals for these major QTL were predicated. Significant relationships between flag leaf- and yield-related traits were evidenced by analyses of Pearson correlations, conditional QTL and genetic mapping. Taken together, these results provide valuable information for understanding flag leaf size and posture of “ideotype” as well as fine mapping and breeding utilization of promising loci in bread wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Austin R, Ford M, Edrich J, Hooper B (1976) Some effects of leaf posture on photosynthesis and yield in wheat. Ann Appl Biol 83:425–446

    Article  Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO, Gundlach H, Hale I, Mascher M, Spannagl M, Wiebe K, Jordan KW, Golan G, Deek J, Ben-Zvi B, Ben-Zvi G, Himmelbach A, MacLachlan RP, Sharpe AG, Fritz A, Ben-David R, Budak H, Fahima T, Korol A, Faris JD, Hernandez A, Mikel MA, Levy AA, Steffenson B, Maccaferri M, Tuberosa R, Cattivelli L, Faccioli P, Ceriotti A, Kashkush K, Pourkheirandish M, Komatsuda T, Eilam T, Sela H, Sharon A, Ohad N, Chamovitz DA, Mayer KFX, Stein N, Ronen G, Peleg Z, Pozniak CJ, Akhunov ED, Distelfeld A (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W (2002) Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Chen Z, Chen G, Hu J, Dai L, Tao G, Pan X (2002) Genetic expression and effects of rolling leaf gene Rl(t) in hybrid rice (Oryza sativa L.). Acta Agron Sin 28:847–851 (in Chinese)

    Google Scholar 

  • Chen G, Zhu Z, Zhang F, Zhu J (2012) Quantitative genetic analysis station for the genetic analysis of complex traits. Chin Sci Bull 57:2721–2726 (in Chinese)

    Article  CAS  Google Scholar 

  • Chu C, Tan C, Yu G, Zhong S, Xu S, Yan L (2011) A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.). G3-Genes Genom Genet 1:637–645

    CAS  Google Scholar 

  • Coleman R, Gill G, Rebetzke G (2001) Identification of quantitative trait loci for traits conferring weed competitiveness in wheat (Triticum aestivum L.). Aust J Agr Res 52:1235–1246

    Article  CAS  Google Scholar 

  • Cui K, Peng S, Xing Y, Yu S, Xu C, Zhang Q (2003) Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice. Theor Appl Genet 106:649–658

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang C (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536

    Article  PubMed  Google Scholar 

  • Cui F, Zhang N, Fan X-L, Zhang W, Zhao C-h, Yang L-J, Pan R-Q, Chen M, Han J, Zhao X-Q, Ji J, Tong Y, Zhang H, Jia J, Zhao G, Li J (2017) Utilization of a Wheat 660 K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep 7:3788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dencic S (1994) Designing a wheat ideotype with increased sink capacity. Plant Breed 112:311–317

    Article  Google Scholar 

  • Donald CT (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  • Duncan W (1971) Leaf angles, leaf area, and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  • Edae EA, Byrne PF, Manmathan H, Haley SD, Moragues M, Lopes MS, Reynolds MP (2013) Association mapping and nucleotide sequence variation in five drought tolerance candidate genes in spring wheat. Plant Genome 6:13

    Article  CAS  Google Scholar 

  • Fan X, Cui F, Zhao C, Zhang W, Yang L, Zhao X, Han J, Su Q, Ji J, Zhao Z, Tong Y, Li J (2015) QTLs for flag leaf size and their influence on yield-related traits in wheat (Triticum aestivum L.). Mol Breed 35:2–16

    Article  Google Scholar 

  • Farooq M, Tagle AG, Santos RE, Ebron LA, Fujita D, Kobayashi N (2010) Quantitative trait loci mapping for leaf length and leaf width in rice cv. IR64 derived lines. J Integr Plant Biol 52:578–584

    Article  CAS  PubMed  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Gouis JL (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662

    Article  CAS  PubMed  Google Scholar 

  • Guitman MR, Arnozis PA, Barneix AJ (1991) Effect of source-sink relations and nitrogen nutrition on senescence and N remobilization in the flag leaf of wheat. Physiol Plant 82:278–284

    Article  CAS  Google Scholar 

  • Ha CM, Jun JH, Nam HG, Fletcher JC (2004) BLADE-ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana. Plant Cell Physiol 45:1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Hussain W, Baenziger PS, Belamkar V, Guttieri MJ, Venegas JP, Easterly A, Sallam A, Poland J (2017) Genotyping-by-sequencing derived high-density linkage map and its application to QTL mapping of flag leaf traits in bread wheat. Sci Rep 7:16394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome by the international wheat genome sequencing consortium (iwgsc). Science 361:eaar7191

    Article  CAS  Google Scholar 

  • Khaliq I, Irshad A, Ahsan M (2008) Awns and flag leaf contribution towards grain yield in spring wheat (Triticum aestivum L.). Cereal Res Commun 36:65–76

    Article  Google Scholar 

  • Kobayashi S, Fukuta Y, Morita S, Sato T, Osaki M, Khush GS (2003) Quantitative trait loci affecting flag leaf development in rice (Oryza sativa L.). Breed Sci 53:255–262

    Article  CAS  Google Scholar 

  • Lahu LU, Bin Y, Ting Z, Wei Z, Kai Y, Xiaofang S, Huiru P, Zhongfu NI, Qixin S (2018) Quantitative trait loci analysis of flag leaf size and grain relative traits in winter wheat. Acta Agri Boreali-Sin 5:1–8

    Google Scholar 

  • Lin H, Qian H, Zhuang J, Lu J, Min S, Xiong Z, Huang N, Zheng K (1996) RFLP mapping of QTLs for yield and related characters in rice (Oryza sativa L.). Theor Appl Genet 92:920–927

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Yang J, Xu H, Hayat Y, Zhu J (2008) Genetic analysis of grain yield conditioned on its component traits in rice (Oryza sativa L.). Aust J Agr Res 59:189–195

    Article  CAS  Google Scholar 

  • Liu L, Sun G, Ren X, Li C, Sun D (2015) Identification of QTL underlying physiological and morphological traits of flag leaf in barley. BMC Genet 16:29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Luo W, Qin N, Ding P, Zhang H, Yang C, Mu Y, Tang H, Liu Y, Li W, Jiang Q, Chen G, Wei Y, Zheng Y, Liu C, Lan X, Ma J (2018a) A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theor Appl Genet 131:2439–2450

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Xu H, Liu G, Guan P, Zhou X, Peng H, Yao Y, Ni Z, Sun Q, Du J (2018b) QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.). Theor Appl Genet 131:839–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Tao Y, Wang Z, Guo Q, Wu F, Yang X, Deng M, Ma J, Chen G, Wei Y, Zheng Y (2018c) Identification of QTL for flag leaf length in common wheat and their pleiotropic effects. Mol Breed 38:4–11

    Article  CAS  Google Scholar 

  • Liu K, Cao J, Yu K, Liu X, Gao Y, Chen Q, Zhang W, Peng H, Du J, Xin M, Hu Z, Guo W, Rossi V, Ni Z, Sun Q, Yao Y (2019) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181:179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenzo M, Pinedo M, Equiza M, Fernández P, Ciancia M, Ganem D, Tognetti J (2019) Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves. Plant Biol 21:84–94

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Ma J, Zhou X, Sun M, Kong X, Wei Y, Jiang Y, Qi P, Jiang Q, Liu Y, Peng Y, Chen G, Zheng Y, Liu C, Lan X (2016) Identification of quantitative trait loci controlling agronomic traits indicates breeding potential of Tibetan semiwild wheat (Triticum aestivum ssp. tibetanum). Crop Sci 56:2410–2420

    Article  CAS  Google Scholar 

  • Luo M-C, Gu YQ, Puiu D, Wang H, Twardziok SO, Deal KR, Huo N, Zhu T, Wang L, Wang Y, McGuire P, Liu S, Long H, Ramasamy R, Rodriguez J, Van S, Yuan L, Wang Z, Xia Z, Xiao L, Anderson O, Ouyang S, Liang Y, Zimin A, Pertea G, Qi P, Ennetzen J, Dai X, Dawson M, Muller H, Kugler K, Rivarola-Duarte L, Spannagl M, Mayer K, Lu F, Bevan M, Leroy P, Li P, You F, Sun Q, Liu Z, Lyons E, Wicker T, Salzberg S, Devos K, Dvorak J (2017) Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 551:498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X (2019a) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Qin N, Cai B, Chen G, Ding P, Zhang H, Yang C, Huang L, Mu Y, Tang H, Liu Y, Liu Y, Wang J, Qi P, Jiang Q, Zheng Y, Liu C, Lan X, Wei Y (2019b) Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet 132:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang H, Li SQ, Zou YY, Li T, Liu JJ, Ding PY, Mu Y, Tang HP, Deng M, Liu YX, Jiang QT, Chen GY, Kang HY, Li W, Pu ZN, Wei YM, Zheng YL, Lan XJ (2019c) Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC Genet 20(1):77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK (2003) Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet 110:649–659

    Article  CAS  Google Scholar 

  • Miyoshi K, Ahn B-O, Kawakatsu T, Ito Y, Itoh J-I, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA 101:875–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monneveux P, Reynolds M, González-Santoyo H, Pena R, Mayr L, Zapata F (2004) Relationships between grain yield, flag leaf morphology, carbon isotope discrimination and ash content in irrigated wheat. Agron Crop Sci 190:395–401

    Article  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Guilin Z, Huihui Y, Sibin Y (2011) Fine mapping a major QTL for flag leaf size and yield-related traits in rice. Theor Appl Genet 123:1319–1330

    Article  CAS  Google Scholar 

  • Peng W, Zhou G, Cui K, Li Z, Yu S (2012) Clustered QTL for source leaf size and yield traits in rice (Oryza sativa L.). Mol Breed 29:99–113

    Article  Google Scholar 

  • Qi W, Tang Y, Zhu W, Li D, Diao C, Xu L, Zeng J, Wang Y, Fan X, Sha L, Zhang H, Zheng Y, Zhou Y, Kang H (2016) Molecular cytogenetic characterization of a new wheat-rye 1BL• 1RS translocation line expressing superior stripe rust resistance and enhanced grain yield. Planta 244:405–416

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Sharma S, Sain R, Sharma R (2003) The genetic control of flag leaf length in normal and late sown durum wheat. J Agric Sci 141:323–331

    Article  CAS  Google Scholar 

  • Simón MR (1999) Inheritance of flag-leaf angle, flag-leaf area and flag-leaf area duration in four wheat crosses. Theor Appl Genet 98:310–314

    Article  Google Scholar 

  • Smith SE, Kuehl R, Ray I, Hui R, Soleri D (1998) Evaluation of simple methods for estimating broad-sense heritability in stands of randomly planted genotypes. Crop Sci 38:1125–1129

    Article  Google Scholar 

  • Sourdille P, Cadalen T, Gay G, Gill B, Bernard M (2010) Molecular and physical mapping of genes affecting awning in wheat. Plant Breed 121:320–324

    Article  Google Scholar 

  • Spagnoletti Zeuli P, Qualset C (1990) Flag leaf variation and the analysis of diversity in durum wheat. Plant Breed 105:189–202

    Article  Google Scholar 

  • Tan C-T, Yu H, Yang Y, Xu X, Chen M, Rudd JC, Xue Q, Ibrahim AM, Garza L, Wang S, Sorrells M, Liu S (2017) Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet 130:1867–1884

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wu X, Li C, Yang W, Huang M, Ma X, Li S (2017) Yield, growth, canopy traits and photosynthesis in high-yielding, synthetic hexaploid-derived wheats cultivars compared with non-synthetic wheats. Crop Pasture Sci 68:115–125

    Article  Google Scholar 

  • Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2004) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R, Caligari PDS, Snape JW (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Wen Y-X, Zhu J (2005) Multivariable conditional analysis for complex trait and its components. Acta Genet Sin 32:289–296 (in Chinese)

    PubMed  Google Scholar 

  • Wu Q, Chen Y, Fu L, Zhou S, Chen J, Zhao X, Zhang D, Ouyang S, Wang Z, Li D, Wang G, Zhang D, Yuan C, Wang L, Han J, Liu Z (2016) QTL mapping of flag leaf traits in common wheat using an integrated high-density SSR and SNP genetic linkage map. Euphytica 208:337–351

    Article  CAS  Google Scholar 

  • Xu H, Zhao J (1995) Canopy photosynthesis capacity and the contribution from different organs in high-yielding winter wheat. Acta Agron Sin 2:204–209 (in Chinese)

    Google Scholar 

  • Xue D-w, Chen M, Zhou M, Chen S, Mao Y, Zhang G (2008) QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J Zhejiang Univ Sci B 9:938–943 (in Chinese)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zheng C, Lu D (1989) Analysis of combining ability for photosynthetic characters of flag leaf and ear in barley. Acta Agric Zhejiang 2:49–54 (in Chinese)

    Google Scholar 

  • Yang D, Liu Y, Cheng H, Lei C, Chen J, Chai S, Li M (2016) Genetic dissection of flag leaf morphology in wheat (Triticum aestivum L.) under diverse water regimes. BMC Genet 17:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Mao SL, Hou DB, Chen GY, Pu ZE, Li W, Lan XJ, Jiang QT, Liu YX, Deng M, Wei Y (2018) Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breed 137:35–49

    Article  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Bao Y, Wang X, Yu H, Ding A, Guan C, Cui J, Wu Y, Sun H, Li X, Zhai D, Li L, Wang H, Cui F (2018) QTL for flag leaf size and their influence on yield-related traits in wheat. Euphytica 214:209

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (31971937 and 31970243), the Key Research and Development Program of Sichuan Province (2018NZDZX0002), the International Science and Technology Cooperation and Exchanges Program of Science and Technology Department of Sichuan Province (2017HH0076) and the Key Projects of Scientific and Technological Activities for Overseas Students of Sichuan Province. We thank the anonymous referees for critical reading and revising this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JM designed the experiments, guided the entire study, participated in data analysis, wrote and extensively revised this manuscript. YT performed the research and participated in drafting this manuscript. JZ, WL, HL, CL, SQL, JJL, PYD, AH, YM and HPT participated in phenotype measurement and data analysis. YXL and QTJ YXL assisted with data collection and analysis. GYC, JRW, WL and ZEP performed data processing and QTL analysis. YLZ and YMW discussed results and revised the manuscript. HYK, GDC and XJL participated in data analysis, QTL validation and discussion of results. All authors participated in the research and approved the final manuscript.

Corresponding author

Correspondence to Jian Ma.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical standards

All experiments and data analyses were conducted in Sichuan. All authors contributed to the study and approved the final version for submission. The manuscript has not been submitted to any other journal.

Additional information

Communicated by Ian Mackay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Frequency distributions of flag leaf-related traits (FLL, flag leaf length; FLW, flag leaf width; FLA, flag leaf area; FLR, the ratio of length/width of flag leaf; FLANG, flag leaf angle; FLOA, flag leaf opening angle; FLBA, flag leaf bend angle) using the best linear unbiased prediction (BLUP) dataset in the 2CN population from ten environments. Solid and dotted arrows represent parent 20828 and CN16, respectively (TIFF 3746 kb)

Fig. S2

Intervals of the eight major quantitative trait loci (QTL) (TIFF 2241 kb)

Fig. S3

The effects of QFll.sicau-5B.3 and QFll.sicau-2D.3 on FLL of the 20828/Chuannong16 (2CN) population. + and - represent lines with and without the positive alleles of the target quantitative trait loci (QTL) based on the flanking markers and the corresponding QTL, respectively. Different lowercase letters indicate significant differences at 0.01 level. Difference value between a given groups was indicated above the line. (TIFF 1889 kb)

Fig. S4

Validation of QFll.sicau-2D.3, QFlw.sicau-2D and QFla.sicau-2D in three populations with different genetic backgrounds under multiple environments. Effects of QFll.sicau-2D.3 (a), QFlw.sicau-2D (b) and QFla.sicau-2D (c) in three validation populations of 20828/SY95-71 (2SY), 20828/Shumai 51 (2SM) and 20828/Chuanmai 60 (2CM). Blank box represents lines carrying the allele of 20828 and other types of boxes represent lines carrying the alternative alleles in the validation populations. ** Significant at P = 0.01. * Significant at P = 0.05. Differences between the two groups were labeled on top of the environment names. (TIFF 2390 kb)

Fig. S5

Student’s t-test between lines carrying 1BS and 1RS chromosome arms for flag leaf-related traits in the 20828/Chuannong16 (2CN) population. a Student’s t-test between all 1BS (n = 139) and 1RS (n = 34) lines. b Student’s t-test between 1BS and 1RS lines after excluding those carrying the major QTL QFll.sicau-2D.3, QFll.sicau-5B.3, QFlw.sicau-2D, QFlr.sicau-5B, QFla.sicau-2D, QFlang.sicau-4B, QFloa.sicau-2D.1 and QFlba.sicau-2D for flag leaf-related traits based on their flanking markers. Differences between the two groups were labeled on top of the environment names (TIFF 2073 kb)

Supplementary material 6 (XLSX 11 kb)

Supplementary material 7 (XLSX 11 kb)

Supplementary material 8 (XLSX 22 kb)

Supplementary material 9 (XLSX 12 kb)

Supplementary material 10 (XLSX 20 kb)

Supplementary material 11 (XLSX 74 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Tu, Y., Zhu, J. et al. Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet 133, 297–315 (2020). https://doi.org/10.1007/s00122-019-03458-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03458-2

Navigation