Skip to main content
Log in

TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The wheat ortholog of the rice gene OsXA21 against bacterial leaf blight showed resistance to multiple pests in bread wheat but different interacting proteins.

Abstract

A quantitative trait locus QYr.osu-5A on the long arm of chromosome 5A in bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) was previously reported to confer consistent resistance in adult plants to predominant stripe rust races, but the gene causing the quantitative trait locus (QTL) is not known. Single-nucleotide polymorphism (SNP) markers were used to saturate the QTL region. Comparative and syntenic regions between wheat and rice (Oryza sativa) were applied to identify candidate genes for QYr.osu-5A. TaXA21-A1, which is referred to as a wheat ortholog of OsXA21-like gene on chromosome 9 in rice, was mapped under the peak of the QYr.osu-5A. TaXA21-A1 not only explained the phenotypic variation in reaction to different stripe rust races but also showed significant effects on resistance to powdery mildew and Hessian fly biotype BP. The natural allelic variation resulted in the alternations of four amino acids in deduced TaXA21-A1 proteins. The interacting proteins of TaXA21-A1 were different from those identified by OsXA21 on rice chromosome 11 against bacterial leaf blight. TaXA21-A1 confers unique resistance against multiple pests in wheat but might not have common protein interactors or thus overlapping functions with OsXA21 in rice. XA21 function has diverged during evolution of cereal crops. The molecular marker developed for TaXA21-A1 would accelerate its application of the candidate gene at the QYr.osu-5A locus in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boukhatem N, Baret PV, Mingeot D, Jacquemin JM (2002) Quanti-tative trait loci for resistance against yellow rust in two wheat-derived recombinant inbred line populations. Theor Appl Genet 104:111–118

    Article  PubMed  CAS  Google Scholar 

  • Cantu D, Yang B, Ruan R, Li K, Menzo V, Fu D, Chern M, Ronald PC, Dubcovsky J (2013) Comparative analysis of protein-protein interactions in the defense response of rice and wheat. BMC Genom 14:166

    Article  CAS  Google Scholar 

  • Cao S, Yan L (2013) Construction of a high-quality yeast two-hybrid (Y2H) library and its application in identification of interacting proteins with key vernalization regulator TaVRN-A1 in wheat. BMC Res Notes 6:81

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cao S, Carver BF, Zhu X, Fang T, Chen Y, Hunger RM, Yan L (2010) A single-nucleotide polymorphism that accounts for allelic variation in the Lr34 gene and leaf rust reaction in hard winter wheat. Theor Appl Genet 121:385–392

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang BE, Stephen S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chen XM (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 4:608–627

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Cana J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Chen Y, Hunger RM, Carver BF, Zhang H, Yan L (2009a) Genetic characterization of powdery mildew resistance in U.S. hard winter wheat. Mol Breeding 24:141–152

    Article  Google Scholar 

  • Chen Y, Carver BF, Wang S, Zhang F, Yan L (2009b) Genetic loci associated with stem elongation and winter dormancy release in wheat. Theor Appl Genet 118:881–889

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Chern M, Canlas PE, Jiang C, Ruan D, Cao P, Ronald PC (2010a) A conserved threonine residue in the juxtamembrane domain of the XA21 pattern recognition receptor is critical for kinase autophosphorylation and XA21-mediated immunity. J Biol Chem 285:10454–10463

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chen X, Chern M, Canlas PE, Ruan D, Jiang C, Ronald PC (2010b) An ATPase promotes autophosphorylation of the pattern recognition receptor XA21 and inhibits XA21-mediated immunity. Proc Natl Acad Sci 107:8029–8034

    Article  Google Scholar 

  • Chen Y, Carver BF, Wang S, Cao S, Yan L (2010c) Genetic regulation of developmental phases in winter wheat. Mol Breed 26:573–582

    Article  Google Scholar 

  • Chhuneja P, Kaur S, Garg T, Ghai M, Kaur S, Prashar M, Bains NS, Goel PK, Keller B, Dhaliwal HS, Singh K (2008) Mapping of adult plant stripe rust resistance genes in diploid A genome wheat species and their transfer to bread wheat. Theor Appl Genet 116:313–324

    Article  PubMed  CAS  Google Scholar 

  • Ding X, Richter T, Chen M, Fujii H, Seo YS, Xie M et al (2009) A rice kinase-protein interaction map. Plant Physiol 149:1478–1492

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fang T, Campbell KG, Li S, Chen X, Wan A, Liu Z, Liu Z, Cao S, Chen Y, Bowden RL, Carver BF, Yan L (2011) Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Sci 51:2455–2465

    Article  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faris JD, Zhang Z, Lu H, Lu S, Reddy L et al (2010) A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci 107:13544–13549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci 100:15253–15258

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Ann Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015) Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    Article  PubMed  CAS  Google Scholar 

  • Kolmer J, Chen X, Jin Y (2009) Diseases which challenge global wheat production– the wheat rusts. In: Carver BF (ed) Wheat: Science and Trade. Wiley-Blackwell, IA, pp 89–124

    Chapter  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lan C, Liang S, Zhou X, Zhou G, Lu Q, Xia X, He Z (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100:313–318

    Article  PubMed  Google Scholar 

  • Lee JR, Boltz KA, Lee SY (2014) Molecular chaperone function of Arabidopsis thaliana phloem protein 2-A1, encodes a protein similar to phloem lectin. Biochem Biophys Res Commun 443:18–21

    Article  PubMed  CAS  Google Scholar 

  • Li G, Yu M, Fang T, Cao S, Carver BF, Yan L (2013) Vernalization requirement duration in winter wheat is controlled by TaVRN-A1 at the protein level. Plant J 76:742–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li G, Wang Y, Chen M, Edae E, Poland J, Akhunov E, Chao S, Bai G, Carver BF, Yan L (2015) Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genom 16:108

    Article  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M3, Dubcovsky J (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 5:449–465

  • McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers J, Appels R (2008) Catalogue of gene symbols. Natl. Inst. of Genetics, Mishima

    Google Scholar 

  • Park CJ, Ronald PC (2012) Cleavage and nuclear localization of the rice XA21 immune receptor. Nature Commun 3:920

    Article  Google Scholar 

  • Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R et al (2008) Rice XB15, a protein phosphatase 2C, negatively regulates cell death and XA21-mediated innate immunity. PLoS Biol 6:e231

    Article  PubMed  PubMed Central  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Ren Y, He ZH, Li J, Lillemo M, Wu L, Bai B, Lu QX, Zhu HZ, Zhou G, Du JY, Lu QL, Xia XC (2012) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  PubMed  CAS  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  PubMed  CAS  Google Scholar 

  • Seo NS, Lee SK, Song MY, Suh JP, Hahn TR, Ronald P, Jeon JS (2008) The HSP90-SGT1-RAR1 molecular chaperone complex: a core modulator in plant immunity. J Plant Biol 51:1–10

    Article  CAS  Google Scholar 

  • Seo Y-S, Chern M, Bartley LE, Han M, Jung K-H, Lee I et al (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi L-Y, Holsten T et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, XA21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan CT, Carver BF, Chen M, Gu Y, Yan L (2013) Genetic association of OPR and LOX genes with resistance to Hessian fly in hexaploid wheat. BMC Genom 14:369

    Article  CAS  Google Scholar 

  • The International Wheat Genome Sequencing, Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:6194

    Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sorensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EAG, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123:555–569

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-S, Pi L-Y, Chen X, Chakrabarty PK, Jiang J, De Leon AL et al (2006) Rice XA21 binding protein 3 is a ubiquitin ligase required for full XA21-mediated disease resistance. Plant Cell 18:3635–3646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu W-H, Wang Y-S, Liu G-Z, Chen X, Tinjuangjun P, Pi L-Y, Song W-Y (2006) The autophosphorylated Ser686, Thr688, and Ser689 residues in the intracellular juxtamembrane domain of XA21 are implicated in stability control of rice receptor-like kinase. Plant J 45:740–751

    Article  PubMed  CAS  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J. 37:528–538

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of wheat vernalization gene VRN1. Proc Natl Acad Sci 100:6263–6268

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci 103:19581–19586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang B, Ruan R, Cantu D, Wang X, Ji W, Ronald PC, Dubcovsky J (2013) A comparative approach expands the protein–protein interaction node of the immune receptor XA21 in wheat and rice. Genome 56:315–326

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA-NIFA T-CAP grant No. 2011-68002-30029, and the Oklahoma Wheat Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuling Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by X. Qi.

M. Liu and L. Lei equally contributed to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Multiple sequence alignment of XA21 proteins. (PDF 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Lei, L., Powers, C. et al. TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. Theor Appl Genet 129, 345–355 (2016). https://doi.org/10.1007/s00122-015-2631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2631-9

Keywords

Navigation