Skip to main content
Log in

Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC). Due to extensive genome duplication and homoeology within and between the A and C genomes of B. napus, most SSR markers display multiple fragments or loci, which limit their application in genetics and breeding studies of this economically important crop. In this study, we collected 3,890 SSR markers from previous studies and also developed 5,968 SSR markers from genomic sequences of B. rapa, B. oleracea and B. napus. Of these, 2,701 markers that produced single amplicons were putative single-locus markers in the B. napus genome. Finally, a set of 230 high-quality single-locus SSR markers were established and assigned to the 19 linkage groups of B. napus using a segregating population with 154 DH individuals. A subset of 78 selected single-locus SSR markers was proved to be highly stable and could successfully discriminate each of the 45 inbred lines and hybrids. In addition, most of the 230 SSR markers showed the single-locus nature in at least one of the Brassica species of the U’s triangle besides B. napus. These results indicated that this set of single-locus SSR markers has a wide range of coverage with excellent stability and would be useful for gene tagging, sequence scaffold assignment, comparative mapping, diversity analysis, variety identification and association mapping in Brassica species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Cavell A, Lydiate D, Parkin I, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    PubMed  CAS  Google Scholar 

  • Chen S, Nelson M, Ghamkhar K, Fu T, Cowling W (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51:1–10

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Xu J, Xia S, Gu J, Yang Y, Fu J, Qian X, Zhang S, Wu J, Liu K (2009) Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet 118:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Cheung F, Trick M, Drou N, Lim Y, Park J, Kwon S, Kim J, Scott R, Pires J, Paterson A (2009) Comparative analysis between homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell 21:1912–1928

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Teakle G, Plaha P, Kim J, Allender C, Beynon E, Piao Z, Soengas P, Han T, King G (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115:777–792

    Article  PubMed  CAS  Google Scholar 

  • Cipriani G, Marrazzo M, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R (2008) A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8:127

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Thomas WTB, Van Eeuwijk F, Ceccarelli S, Grando S, Stanca A, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  PubMed  CAS  Google Scholar 

  • Ghislain M, Spooner DM, Rodríguez F, Villamón F, Núñez J, Vásquez C, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor Appl Genet 108:881–890

    Article  PubMed  CAS  Google Scholar 

  • Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F (2011) Current trends in microsatellite genotyping. Mol Ecol Res 11:591–611

    Article  CAS  Google Scholar 

  • Iniguez-Luy F, Voort A, Osborn T (2008) Development of a set of public SSR markers derived from genomic sequence of a rapid cycling Brassica oleracea L. genotype. Theor Appl Genet 117:977–985

    Article  PubMed  CAS  Google Scholar 

  • Jin L, Lu Y, Xiao P, Sun M, Corke H, Bao J (2010) Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Thero Appl Genet 121:475–487

    Article  Google Scholar 

  • Kaur S, Cogan NOI, Ye G, Baillie R, Hand M, Ling A, Mcgearey A, Kaur J, Hopkins C, Todorovic M (2009) Genetic map construction and QTL mapping of resistance to blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.) cultivars. Thero Appl Genet 120:71–83

    Article  CAS  Google Scholar 

  • Kim H, Choi S, Bae J, Hong C, Lee S, Hossain M, Van Nguyen D, Jin M, Park B, Bang J (2009) Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC genomics 10:432

    Article  PubMed  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  PubMed  CAS  Google Scholar 

  • Li H, Chen X, Yang Y, Xu J, Gu J, Fu J, Qian X, Zhang S, Wu J, Liu K (2011) Development and genetic mapping of microsatellite markers from whole genome shotgun sequences in Brassica oleracea. Mol Breed 28:585–596

    Article  CAS  Google Scholar 

  • Ling A, Kaur J, Burgess B, Hand M, Hopkins C, Li X, Love C, Vardy M, Walkiewicz M, Spangenberg G (2007) Characterization of simple sequence repeat markers derived in silico from Brassica rapa bacterial artificial chromosome sequences and their application in Brassica napus. Mol Ecol Notes 7:273–277

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Lowe A, Moule C, Trick M, Edwards K (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IAP, Rahman MH, Good AG (2011) Analysis of B-Genome Chromosome Introgression in Interspecific Hybrids of Brassica napus × B. carinata. Genetics 187:659–673

    Article  PubMed  CAS  Google Scholar 

  • Parida S, Yadava D, Mohapatra T (2010) Microsatellites in Brassica unigenes: relative abundance, marker design, and use in comparative physical mapping and genome analysis. Genome 53:55–67

    Article  PubMed  CAS  Google Scholar 

  • Parkin I, Gulden S, Sharpe A, Lukens L, Trick M, Osborn T, Lydiate D (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger M, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Sadowski J, Gaubier P, Delseny M, Quiros C (1996) Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet 251:298–306

    PubMed  CAS  Google Scholar 

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Thero Appl Genet 111:723–730

    Article  Google Scholar 

  • Suwabe K, Morgan C, Bancroft I (2008) Integration of Brassica A genome genetic linkage map between Brassica napus and B. rapa. Genome 51:169–176

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Town C, Cheung F, Maiti R, Crabtree J, Haas B, Wortman J, Hine E, Althoff R, Arbogast T, Tallon L (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  PubMed  CAS  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap®3.0. Software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney R, Thiel T, Sretenovic-Rajicic T, Baum M, Valkoun J, Guo P, Grando S, Ceccarelli S, Graner A (2008) Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley. Mol Breed 22:1–13

    Article  CAS  Google Scholar 

  • Wang F, Wang X, Chen X, Xiao Y, Li H, Zhang S, Xu J, Fu J, Huang L, Wu J, Liu K (2011a) Abundance, marker development and genetic mapping of microsatellites from unigenes in Brassica napus. Mol Breed. doi:10.1007/s11032-011-9658-7

    PubMed  Google Scholar 

  • Wang FG, Tian HL, Zhao JR, Yi HM, Wang L, Song W (2011b) Development and characterization of a core set of SSR markers for fingerprinting analysis of Chinese maize varieties. Maydica 56:7–18

    Google Scholar 

  • Warwick S, Black L (1991) Molecular systematics of Brassica and allied genera (subtribe Brassicinae, Brassiceae)—chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  Google Scholar 

  • Xiao S, Xu J, Li Y, Zhang L, Shi S, Wu J, Liu K (2007) Generation and mapping of SCAR and CAPS markers linked to the seed coat color gene in Brassica napus using a genome-walking technique. Genome 50:611–618

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theor Appl Genet 121:1141–1150

    Article  PubMed  Google Scholar 

  • Xiao Y, Cai D, Yang W, Ye W, Younas M, Wu J, Liu K (2012) Genetic structure and linkage disequilibrium pattern of a rapeseed (Brassica napus L.) association mapping panel revealed by microsatellites. Theor Appl Genet. doi:10.1007/s00122-012-1843-5

    Google Scholar 

  • Xu J, Qian X, Wang X, Li R, Cheng X, Yang Y, Fu J, Zhang S, King G, Wu J (2010) Construction of an integrated genetic linkage map for the A genome of Brassica napus using SSR markers derived from sequenced BACs in B. rapa. BMC genomics 11:594

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 31071452), the Doctoral Fund of Ministry of Education of China (No. 20100146110019) and the Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (No. 2011SC04). The authors are grateful to Drs. Chaozhi Ma, Jun Zou and Cheng Cui for providing cultivar information and DNA samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kede Liu.

Additional information

Communicated by C. Quiros.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2012_2027_MOESM1_ESM.xls

Supplemental Table S1 Sequence information of the 230 validated single-locus SSR markers assigned to linkage groups of B. napus

Supplemental Table S2 List of detail information of 90 accessions of rapeseed inbred lines and hybrids

122_2012_2027_MOESM3_ESM.xls

Supplemental Table S3 Summary of the allele distribution for 78 single-locus SSR markers in the inbred lines and hybrids population

122_2012_2027_MOESM4_ESM.xls

Supplemental Table S4 Amplification of the 230 single-locus SSR markers in other five species of the U’s triangle except for B. napus

122_2012_2027_MOESM5_ESM.ppt

Supplemental Fig. 1 Neighbor-joining (N-J) tree constructed using 45 inbreeds and 45 hybrids. The inbred lines and hybrids were prefixed by letter G and K, respectively

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Younas, M., Wang, X. et al. Development of a core set of single-locus SSR markers for allotetraploid rapeseed (Brassica napus L.). Theor Appl Genet 126, 937–947 (2013). https://doi.org/10.1007/s00122-012-2027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-2027-z

Keywords

Navigation