Skip to main content
Log in

Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Because the genetic basis of current upland cotton cultivars is narrow, exploring new germplasm resources and discovering novel alleles relevant to important agronomic traits have become two of the most important themes in the field of cotton research. In this study, G. darwinii Watt, a wild cotton species, was crossed with four upland cotton cultivars with desirable traits. A total of 105 introgression lines (ILs) were successfully obtained. By using 310 mapped SSRs evenly distributed across the interspecific linkage map of G. hirsutum × G. barbadense, these 105 ILs and their corresponding parents were analyzed. A total of 278 polymorphic loci were detected among the 105 ILs, and the average length of introgression segments accumulated to 333.5 cM, accounting for 6.7 % of the whole genome. These lines included many variations. However, high similarity coefficients existed between lines, even between those derived from different parents. Finally, all the ILs and their upland cotton parents were used for association mapping of fiber quality in three environments. A total of 40 SSRs were found to be associated with five fiber quality indexes (P < 0.05) with some being detected in multiple environments and traits. The contribution rate for trait variation was 6.31 % on average, ranging from 2.00 to 14.79 %. This study develops novel ILs for cotton genetics and breeding and provides the basis for future research into fine mapping of genes related to fiber quality, analyses of candidate gene association, and molecular marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdurakhmonov IY, Kohel RJ, Yu JZ (2008) Molecular diversity and association mapping of fiber quality traits in exotic G. hirsutum L. germplasm. Genomics 92:478–487. doi:10.1016/J.YGENO.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  • Adams DJ, Rolf FJ (2000) Ecological character displacement in Plethodon: biomechanical differences found from a geometric study. Proc Natl Acad Sci USA 97:4106–4111

    Article  PubMed  CAS  Google Scholar 

  • Ali ML, Paul L, Yu SB, Lorieux M, Eizenga GC (2010) Chromosome segment substitution lines: a powerful tool for the introgression of valuable genes from Oryza wild species into cultivated rice (O. sativa). Rice 3:218–234. doi:10.1007/s12284-010-9058-3

    Article  Google Scholar 

  • An CF, Jenkins JN, Wu JX, Guo YF, Mccarty JC (2010) Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica 172:21–34. doi:10.1007/s10681-009-0009-2

    Article  Google Scholar 

  • Barrero RA, Bellgard M, Zhang XY (2011) Diverse approaches to achieving grain yield in wheat. Funct Integr Genomics 11:37–48. doi:10.1007/s10142-010-0208-x

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser C Appl Stat 57(1):289–300

    Google Scholar 

  • Berloo RV (2008) GGT2.0: Versatile software for visualization and analysis of genetic data. J Hered 99:232–238. doi:10.1093/jhered/esm109

    Article  PubMed  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326

    Article  Google Scholar 

  • Chen L, Zhang ZS, Hu MC (2008) Genetic linkage map construction and QTL mapping for yield and fiber quality in upland cotton (Gossypium hirsutum L.). Acta Agr Sinica 34:1199–1205. doi:10.3724/sp.j.1006.2008.01199

    Article  CAS  Google Scholar 

  • Chen H, Qian N, Guo WZ, Song QP, Li BC, Deng FJ, Dong CG, Zhang TZ (2009) Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in upland cotton. Theor Appl Genet 119:605–612. doi:10.1007/s00122-009-1070-x

    Article  PubMed  Google Scholar 

  • He DH, Xing HY, Zhao JX, Li TT, Tang Y, Zeng Z (2011) Population structure inferring and association analysis of fiber quality in cultivated cotton. J Northwest A & F Univ (Nat Sci Ed) 39:103–112

    Google Scholar 

  • Iqbal MJ, Aziz N, Saeed NA (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 94:139–144. doi:10.1007/s001220050392

    Article  PubMed  CAS  Google Scholar 

  • Jing ZB, Pan DJ, Qu YY, Fan ZL, Chen Y, Chen JY, Chen F, Li C (2008) Application of AB-QTL to exploiting and utilizing the elite genes in wild rice. Mol Plant Breed 6(4):637–644

    CAS  Google Scholar 

  • Li DG, Zhang WY (2004) Study on main economic characters heterosis of upland cotton hybrids F1 generation. J Hubei Agric Coll 24:253–257

    Google Scholar 

  • Li HH, Zhang LY, Wang JK (2010) Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agro Sinica 36(6):918–931. doi:10.3724/SP.J.1006.2010.00918

    Article  Google Scholar 

  • Liang ZL (1999) Genetic and breeding science of cotton hybridization. Science Press, Beijing

    Google Scholar 

  • Lin ZX, He DH, Zhang XL (2005) Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD. Plant Breed 124:180–187. doi:10.1111/j.1439-0523.2004.01039.x

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129. doi:10.1093/bioinformatics/bti282

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Tu L, Wang L (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385–1394. doi:10.1007/s00299-008-0545-6

    Article  PubMed  CAS  Google Scholar 

  • Nie YC, Zhou XR, Zhang XL (2002) Comparison on yield, pest-resistance and fiber quality of transgenic pest-resistant cotton. Plant Genet Res Sci 3:8–12

    Google Scholar 

  • Pan JJ (1998) Breeding science for cotton. Agricultural Publishing House of China, Beijing

    Google Scholar 

  • Park YH, Alabady MS, Ulloa M, Sickler B, Wilkins TA, Yu J, Stelly DM, Kohel RJ, Osama ME, Canrell RG (2005) Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Mol Gen Genomics 274:428–441. doi:10.1007/s00438-005-0037-0

    Article  CAS  Google Scholar 

  • Paterson AH, Brubaker C, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127. doi:10.1007/BF02670470

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  • Saha S, Wu J, Jenkins JN, McCarty JC, Jr, Gutierrez OA, Stelly DM, Percy RG, Raska DA (2004) Effect of chromosome substitutions from Gossypium barbadense L. 3-79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J Cotton Sci 8:162–169

    Google Scholar 

  • Septiningsih EM, Prasetiyono J, Lubis E, Tai TH, Tjubaryat T, Moeljopawiro S, McCouch SR (2003) Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon. Theor Appl Genet 107(8):1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Shen XL, Guo WZ, Zhu XF, Yuan YL, Yu ZJ, Kohel RJ, Zhang TZ (2005) Molecular mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR markers. Mol Breed 15:169–181. doi:10.1007/S11032-004-4731-0

    Article  CAS  Google Scholar 

  • Takershi E, Yoshinobu T, Yasunori N, Toshio Y, Kasumi T, Masahiro Y (2005) Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Kooshihikari’. Breed Sci 55:65–73

    Article  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92(2):191–203

    Article  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Hinga ME, Lobos KB, Xu Y, Martinez C, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components, and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Ding YZ, Lu QX, Guo WZ, Zhang TZ (2008) Development of Gossypium barbadense chromosome segment substitution lines in the genetic standard line TM-1 of Gossypium hirsutum. Chin Sci Bull 53:1512–1517. doi:10.1007/s11434-008-0220-x

    Article  CAS  Google Scholar 

  • Yang ZM, Li JZ, Li AG, Zhang BC, Liu GP, Li JW, Shi YZ, Liu AY, Jiang JX, Wang T, Yuan YL (2009) Developing chromosome segment substitution lines (CSSLs) in cotton (Gossypium) using advanced backcross and MAS. Mol Plant Breed 7:233–241

    CAS  Google Scholar 

  • Ye GY, Liang SS, Wan JM (2010) QTL mapping of protein content in rice using single chromosome segment substitution lines. Theor Appl Genet 121:741–750. doi:10.1007/s00122-010-1345-2

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang YX, Lin ZX, Xia QZ, Zhang XL (2008) Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BC1 population between Gossypium hirsutum and G. barbadense. Genome 51:534–546. doi:10.1139/G08-033

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breed 24:49–61. doi:10.1007/s11032-009-9271-1

    Article  Google Scholar 

  • Zhang K, Zhang J, Ma J, Tang SY, Liu DJ, Teng ZH, Liu DX, Zhang ZS (2010) Genetic mapping and quantitative trait locus analysis of fiber quality traits using a three-parent composite population in upland cotton (Gossypium hirsutum L.). Mol Breed. doi:10.1007/s11032-011-9549-y

  • Zhao LN, Zhou HJ, Lu LX, Liu L, Li XH, Lin YJ, Yu SB (2009) Identification of quantitative trait loci controlling rice mature seed cultivability chromosomal segment substitution lines. Plant Cell Rep 28:247–256. doi:10.1007/s00299-008-0641-7

    Article  PubMed  Google Scholar 

  • Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, Indica recipient 93–11 and Japonica donor Nipponbare. Pant Mol Biol Rep 27:126–131. doi:10.1007/s11105-008-0054-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program (No. 2011CB109303) and Genetically Modified Organisms Breeding Major Project of China (No. 2008ZX08009-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxu Lin.

Additional information

Communicated by M. Frisch.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Nie, Y., Lin, Z. et al. Molecular diversity, genomic constitution, and QTL mapping of fiber quality by mapped SSRs in introgression lines derived from Gossypium hirsutum × G. darwinii Watt. Theor Appl Genet 125, 1263–1274 (2012). https://doi.org/10.1007/s00122-012-1911-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1911-x

Keywords

Navigation