Skip to main content
Log in

Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare

  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Chromosome segment substitution lines (CSSLs) are powerful tools for detecting and precisely mapping quantitative trait loci (QTLs) and evaluating gene action as a single factor. In this study, 103 CSSLs were produced using two sequenced rice cultivars: 93-11, an elite restorer indica cultivar as recipient, and Nipponbare, a japonica cultivar, as donor. Each CSSL carried a single chromosome substituted segment. The total length of the substituted segments in the CSSLs was 2,590.6 cM, which was 1.7 times of the rice genome. To evaluate the potential application of these CSSLs for QTL detection, phenotypic variations of seed shattering, grain length and grain width in 10 CSSLs were observed. Two QTLs for seed shattering and three for grain length and grain width were identified and mapped on rice chromosomes. The results demonstrate that CSSLs are excellent genetic materials for dissecting complex traits into a set of monogenic loci. These CSSLs are of great potential value for QTL mapping and plant marker-assisted breeding (MAB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CSSLs:

Chromosome segment substitution lines

MAB:

Marker-assisted breeding

MAS:

Marker-assisted selection

QTLs:

Quantitative trait loci

SSR:

Simple sequence repeats

References

  • Ahn SN, Suh JP, Oh CS, Lee SJ, Suh HS. Development of introgression lines of weedy rice in the background of Tongil-type rice. Rice Genet Newsl 2002;19:14–5.

    Google Scholar 

  • Aida Y, Tsunematsu H, Doi K, Yoshimura A. Development of a series of introgression lines of japonica in the background of indica rice. Rice Genet Newsl 1997;14:41–3.

    Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, et al. Advanced backcross QTL analysis of tomato: II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon Hirsutum and L. pimpinellifolium. Theor Appl Genet 1998;97:170–80. doi:10.1007/s001220050882.

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V. Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 2000;100:232–41. doi:10.1007/s001220050031.

    Article  CAS  Google Scholar 

  • Doi K, Iwata N, Yoshimura A. The construction of chromosome substitution lines of African rice (Oryza glaberrima Steud.) in the background of Japonica rice (O. sativa L.). Rice Genet Newsl 1997;14:39–41.

    CAS  Google Scholar 

  • Ebitani T, Takeuchi Y, Nonoue Y, Yamamoto T, Takeuchi K, Yano M. Construction and evaluation of chromosome segment substitution lines carrying overlapping chromosome segments of indica rice cultivar ‘Kasalath’ in a genetic background of japonica elite cultivar ‘Koshihikari’. Breed Sci 2005;55:65–73. doi:10.1270/jsbbs.55.65.

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D. A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 1994;79:175–9. doi:10.1007/BF00022516.

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 1995;141:1147–62.

    PubMed  CAS  Google Scholar 

  • He FH, Xi ZY, Zeng RZ, Talukdar A, Zhang GQ. Developing single segment substitution lines (SSSLs) in rice (Oryza sativa L.) using advanced backcrosses and MAS. Acta Genet Sin 2005;32:825–31.

    PubMed  Google Scholar 

  • Howell PM, Marshall DF, Lydiate DJ. Towards developing intervarietal substitution lines in Brassica napus using marker-assisted selection. Genome 1996;39:348–58. doi:10.1139/g96-045.

    Article  PubMed  CAS  Google Scholar 

  • Huang N, McCouch SR, Mew T, Parco A, Guiderdoni E. Development of an RFLP map from a doubled haploid population in rice. Rice Genet Newsl 1994;11:134–7.

    Google Scholar 

  • Jena KK, Kochert G, Khush GS. RFLP analysis of rice (Oryza sativa L.) introgression lines. Theor Appl Genet 1992;84:608–16. doi:10.1007/BF00224159.

    Article  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, et al. An SNP cause loss of seed shattering during rice domestication. Science 2006;312:1392–6. doi:10.1126/science.1126410.

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Aida Y, Nakamura K, Tsunematsu H, Doi K, Yoshimura A. Reciprocal chromosome segment substitution series derived from japonica and indica cross of rice (Oryza sativa L.). Breed Sci 2002;52:319–25. doi:10.1270/jsbbs.52.319.

    Article  CAS  Google Scholar 

  • Li CB, Zhou AL, Sang T. Rice domestication by reducing shattering. Science 2006;311:1936–9. doi:10.1126/science.1123604.

    Article  PubMed  CAS  Google Scholar 

  • Liu GM, Li WT, Zeng RZ, Zhang GQ. Development of single segment substitution lines (SSSLs) of subspecies in rice. Chin J Rice Sci 2003;17:201–4.

    CAS  Google Scholar 

  • McCouch SR, Doerge RW. QTL mapping in rice. Trends Genet 1995;11:482–7. doi:10.1016/S0168-9525(00)89157-X.

    Article  PubMed  CAS  Google Scholar 

  • McCouch SR, Teytelman L, Xu YB, Lobos KB, Clare K, Walton M, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res 2002;9:199–207. doi:10.1093/dnares/9.6.199.

    Article  PubMed  CAS  Google Scholar 

  • Mei HW, Xu JL, Li ZK, Yu Q, Guo LB, Wang YP, et al. QTLs influencing panicle size detected in two reciprocal introgressive line populations in rice (Oryza sativa L.). Theor Appl Genet 2006;112:648–56. doi:10.1007/s00122-005-0167-0.

    Article  PubMed  CAS  Google Scholar 

  • Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 1996;252:597–607.

    PubMed  CAS  Google Scholar 

  • Paterson AH. Molecular dissection of quantitative traits: progress and prospects. Genome Res 1995;5:321–33. doi:10.1101/gr.5.4.321.

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors, using a complete linkage map of restriction fragment length polymorphisms. Nature 1988;335:721–6. doi:10.1038/335721a0.

    Article  PubMed  CAS  Google Scholar 

  • Peleman JD, van der Voort JR. Breeding by design. Trends Plant Sci 2003;8:330–4. doi:10.1016/S1360-1385(03)00134-1.

    Article  PubMed  CAS  Google Scholar 

  • Rae SJ, Macaulay M, Ramsay L, Leigh F, Matthews D, O’Sullivan DM, et al. Molecular barley breeding. Euphytica 2007;158:295–303. doi:10.1007/s10681-006-9166-8.

    Article  CAS  Google Scholar 

  • Ribaut JM, Hoisington D. Marker-assisted selection: new tools and strategies. Trends Plant Sci 1998;3:236–9. doi:10.1016/S1360-1385(98)01240-0.

    Article  Google Scholar 

  • Takai T, Nonoue Y, Yamamoto S, Yamanouchi U, Matsubara K, Liang ZW, et al. Development of chromosome segment substitution lines derived from backcross between indica donor cultivar ‘Nona bokra’ and japonica recipient cultivar ‘Koshihikari’. Breed Sci 2007;57:257–61. doi:10.1270/jsbbs.57.257.

    Article  Google Scholar 

  • Tan YF, Xing YZ, Li JX, Yu SB, Xu CG, Zhang QF. Genetic bases of appearance quality of rice grains in Shan you 63, an elite rice hybrid. Theor Appl Genet 2000;101:823–9. doi:10.1007/s001220051549.

    Article  CAS  Google Scholar 

  • Tanksley SD. Mapping polygenes. Annu Rev Genet 1993;27:205–33. doi:10.1146/annurev.ge.27.120193.001225.

    Article  PubMed  CAS  Google Scholar 

  • Tsunematsu H, Yoshimura A, Harushima Y, Nagamura Y, Kurata N, Yano M, et al. RFLP framework map using recombinant inbred lines in rice. Breed Sci 1996;46:279–84.

    Google Scholar 

  • Von Korff M, Wang H, Leon J, Pillen K. Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 2004;109:1736–45. doi:10.1007/s00122-004-1818-2.

    Article  CAS  Google Scholar 

  • Wan XY, Wan JM, Jiang L, Wang JK, Zhai HQ, Weng JF, et al. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet 2006;112:1258–70. doi:10.1007/s00122-006-0227-0.

    Article  PubMed  CAS  Google Scholar 

  • Xi ZY, He FH, Zeng RZ, Zhang ZM, Ding XH, Li WT, et al. Development of a wide population of chromosome single-segment substitution lines in the genetic background of an elite cultivar of rice (Oryza sativa L.). Genome 2006;49:476–84. doi:10.1139/G06-005.

    Article  PubMed  CAS  Google Scholar 

  • Xing RZ, Tan YF, Xu CG, Hua JP, Sun LX. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population. Acta Bot Sin 2001;43:840–5.

    CAS  Google Scholar 

  • Yano M. Genetic and molecular dissection of naturally occurring variations. Curr Opin Plant Biol 2001;4:130–5. doi:10.1016/S1369-5266(00)00148-5.

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Mol Biol 1997;35:145–53. doi:10.1023/A:1005764209331.

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Tanksley SD. Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 1989;77:95–101. doi:10.1007/BF00292322.

    Article  Google Scholar 

  • Zamir D. Improving plant breeding with exotic genetic libraries. Nat Rev Genet. 2001;2:983–9. doi:10.1038/35103589.

    Article  PubMed  CAS  Google Scholar 

  • Zheng KL, Huang N, Bennett J. PCR-based marker-assisted selection in rice breeding. IRRI discussion paper series No.12 1995

Download references

Acknowledgements

These studies were funded by National Science and Technology Program (2006BAD01A01), Major Research Program of Agricultural Structure Adjustment (05-01-05B) and Jiangsu High Technology Program (BG2004304, BG2005301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cailin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, W., Lin, J., Yang, D. et al. Development of Chromosome Segment Substitution Lines Derived from Backcross between Two Sequenced Rice Cultivars, Indica Recipient 93-11 and Japonica Donor Nipponbare. Plant Mol Biol Rep 27, 126–131 (2009). https://doi.org/10.1007/s11105-008-0054-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-008-0054-3

Keywords

Navigation