Skip to main content
Log in

Heritable variation in the inflorescence replacement program of Arabidopsis thaliana

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Owing to their sessile habits and trophic position within global ecosystems, higher plants display a sundry assortment of adaptations to the threat of predation. Unlike animals, nearly all higher plants can replace reproductive structures lost to predators by activating reserved growing points called axillary meristems. As the first step in a program aimed at defining the genetic architecture of the inflorescence replacement program (IRP) of Arabidopsis thaliana, we describe the results of a quantitative germplasm survey of developmental responses to loss of the primary reproductive axis. Eighty-five diverse accessions were grown in a replicated common garden and assessed for six life history traits and four IRP traits, including the number and lengths of axillary inflorescences present on the day that the first among them re-flowered after basal clipping of the primary inflorescence. Significant natural variation and high heritabilities were observed for all measured characters. Pairwise correlations among the 10 focal traits revealed a multi-dimensional phenotypic space sculpted by ontogenic and plastic allometries as well as apparent constraints and outliers of genetic interest. Cluster analysis of the IRP traits sorted the 85 accessions into 5 associations, a topology that establishes the boundaries within which the evolving Arabidopsis genome extends and restricts the species’ IRP repertoire to that observable worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aida M, Vernoux T, Furutani M, Traas J, Tasaka M (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974

    PubMed  CAS  Google Scholar 

  • Angenent GC, Stuurman J, Snowden KC, Koes R (2005) Use of Petunia to unravel plant meristem functioning. Trend Plant Sci 10:243–250

    Article  CAS  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:531–539

    Article  CAS  Google Scholar 

  • Auldridge ME, Block A, Vogel JT, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993

    Article  PubMed  CAS  Google Scholar 

  • Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Mol Ecol 15:1405–1418

    Article  PubMed  CAS  Google Scholar 

  • Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Beemster GT, De Vusser K, De Tavernier E, De Bock K, Inze D (2002) Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol 129:854–864

    Article  PubMed  CAS  Google Scholar 

  • Bennett M, Cullimore J (1990) Expression of three plant glutamine synthetase cDNA in Escherichia coli—formation of catalytically active isoenzymes, and complementation of a glnA mutant. Eur J Biochem 193:319–324

    Article  PubMed  CAS  Google Scholar 

  • Bennett T, Leyser O (2006) Something on the side: axillary meristems and plant development. Plant Mol Biol 60:843–854

    Article  PubMed  CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    Article  PubMed  CAS  Google Scholar 

  • Berg R (1960) The ecological significance of correlation pleiades. Evolution 14:171–180

    Article  Google Scholar 

  • Bergelson J, Stahl E, Dudek S, Kreitman M (1998) Genetic variation within and among populations of Arabidopsis thaliana. Genetics 148:1311–1323

    PubMed  CAS  Google Scholar 

  • Beveridge C (2006) Advances in the control of axillary bud outgrowth: sending a message. Curr Opin Plant Biol 9:35–40

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA, Ross JJ, Murfet IC (1996) Branching in pea—action of genes rms3 and rms4. Plant Physiol 110:859–865

    PubMed  CAS  Google Scholar 

  • Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol 115:1251–1258

    CAS  Google Scholar 

  • Beveridge CA, Weller JL, Singer SR, Hofer JM (2003) Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness. Plant Physiol 131:927–934

    Article  PubMed  CAS  Google Scholar 

  • Bidart-Bouzat MG (2004) Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology 85:297–303

    Article  Google Scholar 

  • Bidart-Bouzat MG, Portnoy S, Delucia EH, Paige KN (2004) Elevated CO2 and herbivory influence trait integration in Arabidopsis thaliana. Ecol Lett 7:837–847

    Article  Google Scholar 

  • Blows MW, Hoffmann AA (2005) A reassessment of genetic limits to evolutionary change. Ecology 86:1371–1384

    Article  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg P, Turnbull C, Srinivasan M, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132:718–725

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Bastow RM, Mylne JS, Dean C (2004) Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16(Suppl):S18–S31

    Article  PubMed  CAS  Google Scholar 

  • Camara MD, Ancell CA, Pigliucci M (2000) Induced mutations: a novel tool to study phenotypic integration and evolutionary constraints in Arabidopsis thaliana. Evol Ecol Res 2:1009–1029

    Google Scholar 

  • Clarke JH, Mithen R, Brown JK, Dean C (1995) QTL analysis of flowering time in Arabidopsis thaliana. Mol Gen Genet 248:278–286

    Article  PubMed  CAS  Google Scholar 

  • Cline M (1991) Apical dominance. Bot Rev 57:318–358

    Article  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Doust A (2007) Architectural evolution and its implications for domestication in grasses. Ann Bot (Lond) 100:941–950

    Article  Google Scholar 

  • Doust AN, Devos KM, Gadberry MD, Gale MD, Kellogg EA (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 101:9045–9050

    Article  PubMed  CAS  Google Scholar 

  • Ehrenreich IM, Stafford PA, Purugganan MD (2007) The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 176:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Emery R, Longnecker N, Atkins C (1998) Branch development in Lupinus angustifolius L. II. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds. J Exp Bot 49:555–652

    Article  CAS  Google Scholar 

  • Erickson RO, Sax KB (1956) Elemental growth rate of the primary root of Zea mays. Proc Am Phil Soc 100:487–498

    Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  PubMed  CAS  Google Scholar 

  • Grbic B, Bleecker A (2000) Axillary meristem development in Arabidopsis thaliana. Plant J 21:215–223

    Article  PubMed  CAS  Google Scholar 

  • Griffith C, Kim E, Donohue K (2004) Life-history variation and adaptation in the historically mobile plant Arabidopsis thaliana (Brassicaceae) in North America. Am J Bot 91:837–849

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding, 2nd edn. Iowa State University Press, Ames

    Google Scholar 

  • Hempel FD, Feldman LJ (1994) Bi-directional inflorescence development in Arabidopsis thaliana—acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192:276–286

    Article  Google Scholar 

  • Institute SAS (1998) SAS/STAT User’s Guide, RElease 6.0, 3rd edn. SAS Institute Inc, Cary, NC

    Google Scholar 

  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge C, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142:1014–1026

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen RA, Que Q, Stam M (1999) Do unintended antisense transcripts contribute to sense cosuppression in plants? [letter; comment]. Trends Genet 15:11–12

    Article  PubMed  CAS  Google Scholar 

  • Juenger T, Purugganan M, Mackay TF (2000) Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156:1379–1392

    PubMed  CAS  Google Scholar 

  • Karlsson BH, Sills GR, Nienhuis J (1993) Effects of photoperiod and vernalization on the number of leaves at flowering in 32 Arabidopsis thaliana (Brassicaceae) ecotypes. Am J Bot 80:646–648

    Article  Google Scholar 

  • Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003) LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100:11765–11770

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Physiol Plant Mol Biol 55:141–172

    CAS  Google Scholar 

  • Kowalski SP, Lan TH, Feldmann KA, Paterson AH (1994) QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet 245:548–555

    Article  PubMed  CAS  Google Scholar 

  • Kuittinen H, Sillanpää MJ, Savolainen O (1997) Genetic basis of adaptation: flowering time in Arabidopsis thaliana. TAG Theor Appl Genet V95:573–583

    Article  Google Scholar 

  • Kurata N, Miyoshi K, Nonomura K, Yamazaki Y, Ito Y (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol 46:48–62

    Article  PubMed  CAS  Google Scholar 

  • Lempe J, Balasubramanian S, Sureshkumar S, Singh A, Schmid M, Weigel D (2005) Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1:109–118

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8:541–545

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2005) The fall and rise of apical dominance. Curr Opin Genet Dev 15:468–471

    Article  PubMed  CAS  Google Scholar 

  • Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16:R424–R433

    Article  PubMed  CAS  Google Scholar 

  • Leyser O, Day S (2003) Mechanisms in plant development. Blackwell, Oxford

    Google Scholar 

  • Leyser HM, Pickett FB, Dharmasiri S, Estelle M (1996) Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J 10:403–413

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Long J, Barton M (2000) Initiation of axillary and floral meristems in Arabidopsis. Dev Biol 218:341–353

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T (1996) Genetic constraints on life-history evolution: quantitative-trait loci influencing growth and flowering in Arabidopsis thaliana. Evolution 50:140–145

    Article  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  PubMed  CAS  Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and the genetic variance and covariance. Biometrics 15:518–537

    Article  Google Scholar 

  • Morris SE, Turnbull CG, Murfet IC, Beveridge CA (2001) Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol 126:1205–1213

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

    Article  PubMed  Google Scholar 

  • Napoli C (1996) Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol 111:27–37

    PubMed  CAS  Google Scholar 

  • Napoli CA, Ruehle J (1996) New mutations affect meristem growth and potential in Petunia hybrida Vilm. J Hered 87:371–377

    Google Scholar 

  • Napoli CA, Beveridge CA, Snowden KC (1999) Reevaluating concepts of apical dominance and the control of axillary bud outgrowth. Curr Top Dev Biol 44:127–169

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D (2005) Callose (beta-1, 3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol 5:22

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  CAS  Google Scholar 

  • Olson E, Miller R (1958) Morphological integration. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    Article  PubMed  CAS  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) REVOLUTA regulates meristem initiation at lateral positions. Plant J 25:223–236

    Article  PubMed  CAS  Google Scholar 

  • Paige KN (1992) Overcompensation in response to mammalian herbivory: from mutualistic to antagonistic interactions. Ecology 73:2076–2085

    Article  Google Scholar 

  • Paige KN (1999) Regrowth following ungulate herbivory in scarlet gilia, Ipomopsis aggregata: geographic evidence for overcompensation. Oecologia 118:316–323

    Article  Google Scholar 

  • Perez Callejon E, Casamayor A, Pujol G, Clua E, Ferrer A, Arino J (1993) Identification and molecular cloning of two homologues of protein phosphatase-X from Arabidopsis thaliana. Plant Mol Biol 23:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Pigliucci M (2003) Selection in a model system: Ecological genetics of flowering time in Arabidopsis thaliana. Ecology (Washington DC) 84:1700–1712

    Google Scholar 

  • Pigliucci M (2007) Finding the way in phenotypic space: the origin and maintenance of constraints on organismal form. Ann Bot (Lond) 100:433–438

    Google Scholar 

  • Pigliucci M, Preston K (eds) (2004) Phenotypic integration. Oxford University Press, Oxford

    Google Scholar 

  • Pigliucci M, Schlichting CD (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

  • Pouteau S, Ferret V, Gaudin V, Lefebvre D, Sabar M, Zhao G, Prunus F (2004) Extensive phenotypic variation in early flowering mutants of Arabidopsis. Plant Physiol 135:201–211

    Article  PubMed  CAS  Google Scholar 

  • Rameau C, Murfet IC, Laucou V, Floyd RS, Morris SE, Beveridge CA (2002) Pea rms6 mutants exhibit increased basal branching. Physiol Plant 115:458–467

    Article  PubMed  CAS  Google Scholar 

  • Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) bus, A bushy arabidopsis cyp79f1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367

    Article  PubMed  CAS  Google Scholar 

  • Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433–447

    Article  PubMed  CAS  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 99:1064–1069

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA 96:290–295

    Article  PubMed  CAS  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York, NY

    Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9:2109–2118

    Article  PubMed  CAS  Google Scholar 

  • Shimizu-Sato S, Mori H (2001) Control of outgrowth and dormancy in axillary buds. Plant Physiol 127:1405–1413

    Article  PubMed  CAS  Google Scholar 

  • Simons JL, Napoli CA, Janssen BJ, Plummer K, Snowden KC (2007) Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant Physiol 143:697–706

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Napoli CA (2003) A quantitative study of lateral branching in petunia. Funct Plant Biol 30:987–994

    Article  Google Scholar 

  • Stafstrom J (1993) Axillary bud development in pea: apical dominance, growth cycles, hormonal regulation and plant architecture. In: Amasino R (ed) Cellular communication in plants. Academic Press, New York, pp 75–86

    Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Stirnberg P, Furner IJ, Leyser HMO (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94

    Article  PubMed  CAS  Google Scholar 

  • Tabachnick BG, Fidell L (2000) Using multivariate statistics, 4th edn. Allyn & Bacon, New York

  • Thimann K, Skoog F (1933) Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA 19:714–716

    Article  PubMed  CAS  Google Scholar 

  • Tonsor SJ, Alonso-Blanco C, Koornneef M (2005) Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant Cell Environ 28:2–20

    Article  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Modliszewski JL, Mackay TF, Purugganan MD (2002) Quantitative trait loci for inflorescence development in Arabidopsis thaliana. Genetics 160:1133–1151

    PubMed  CAS  Google Scholar 

  • Utz HF (1998) PLABSTAT: a computer program for the statistical analysis of plant breeding experiments. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart

    Google Scholar 

  • Vesk P, Westoby M (2004) Funding the bud bank: a review of the costs of buds. Oikos 106:200–208

    Article  Google Scholar 

  • Weigel D, Nordborg M (2005) Natural variation in Arabidopsis. How do we find the causal genes? Plant Physiol 138:567–568

    Article  PubMed  CAS  Google Scholar 

  • Weinig C, Stinchcombe JR, Schmitt J (2003a) Evolutionary genetics of resistance and tolerance to natural herbivory in Arabidopsis thaliana. Evolution Int J Org Evolution 57:1270–1280

    Google Scholar 

  • Weinig C, Stinchcombe JR, Schmitt J (2003b) QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Mol Ecol 12:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222:604–612

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Miranda Neuhaus, Melissa Pindel, Kirsten Grau and Lucy Kehinde for expert assistance with phenotyping plants and entering data for analysis; and, the Research Board of the University of Illinois at Urbana-Champaign for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Jacobs.

Additional information

Communicated by M. Kearsey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sano, C.M., Bohn, M.O., Paige, K.N. et al. Heritable variation in the inflorescence replacement program of Arabidopsis thaliana . Theor Appl Genet 119, 1461–1476 (2009). https://doi.org/10.1007/s00122-009-1148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1148-5

Keywords

Navigation