Skip to main content
Log in

Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Synthetic wheat lines (2n = 6x = 42, AABBDD), which are amphiploids developed from the hybrid between tetraploid wheat (Triticum turgidum L., 2n = 4x = 28, AABB) and Aegilops tauschii Coss. (2n = 2x = 14, DD), are important sources of resistance against tan spot of wheat caused by Pyrenophora tritici-repentis. In the present study, inheritance, allelism and genetic linkage analysis in synthetic wheat lines have been carried out. Segregation analysis of the phenotypic and molecular data in F2:3 populations of CS/XX41, CS/XX45, and CS/XX110 has revealed a 1:2:1 segregation ratio indicating that resistance of tan spot in these synthetic lines is controlled by a single gene. Allelism tests detected no segregation for susceptibility among F1 and F2 plants derived from intercrosses of the resistance lines XX41, XX45 and XX110 indicating that the genes are either allelic or tightly linked. Linkage analysis using SSR markers showed that all the three genes: tsn3a in XX41, Tsn3b in XX45 and tsn3c in XX110 are clustered in the region around Xgwm2a, located on the short arm of chromosome 3D. The linked markers and genetic relationship of these genes will greatly facilitate their use in wheat breeding and deployment of cultivars resistant to tan spot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homeologous group 7 chromosomes. Theor Appl Genet 84:495–504

    Article  Google Scholar 

  • Cheong J, Wallwork H, Williams KJ (2004) Identification of a major QTL for yellow leaf spot resistance in the wheat varieties Brookton and Cranbrook. Aust J Agric Res 55:315–319

    Article  Google Scholar 

  • Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Article  Google Scholar 

  • Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005) Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248–256

    CAS  PubMed  Google Scholar 

  • Effertz RJ, Meinhardt SW, Anderson JA, Jordal JG, Francl LJ (2002) Identification of a chlorosis inducing toxin from Pyrenophora tritici-repentis and the chromosomal location of an insensitive locus in wheat. Phytopathology 92:527–533

    CAS  PubMed  Google Scholar 

  • Elias E, Cantrell RG, Hosford Jr RM (1989) Heritability of resistance to tan spot in durum wheat and its associations with other agronomic traits. Crop Sci 29:299–304

    Article  Google Scholar 

  • Ellis JG, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T (1997) Advances in the molecular genetic analysis of the flax-flax rust interaction. Annu Rev Phytopathol 35:271–291

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrotic inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463

    Article  CAS  Google Scholar 

  • Faris JD, Anderson JA, Francl LJ, Jordahl JG (1997) RFLP mapping of resistance to chlorosis induction by Pyrenophora tritici-repentis in wheat. Theor Appl Genet 94:98–103

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to Ptr ToxB in wheat. Theor Appl Genet 109:464–471

    Article  PubMed  CAS  Google Scholar 

  • Gamba FM, Lamari L (1998) Mendelian inheritance of tan spot (Pyrenophora tritici-repentis) in selected genotypes of durum wheat (Triticum durum). Can J Plant Pathol 20:408–14

    Article  Google Scholar 

  • Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their application in wheat breeding. Plant Breed 118:369–390

    Article  CAS  Google Scholar 

  • Haen KM, Lu HJ, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mappingof the tsn1 gene in wheat. Crop Sci 44:951–962

    Article  CAS  Google Scholar 

  • Hartl L, Mohler V, Zeller FJ, Hsam SLK, Schweizer G (1999) Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L). Genome 42:322–329

    Article  CAS  Google Scholar 

  • Hosford Jr RM (1982) Tan spot. Pages 1–24. In: RM Hosford Jr. (ed), Tan spot of wheat and related diseases. North Dakota State University. P 116

  • Hsam SLK, Huang XQ, Ernst F, Hartl L, Zeller FJ (1998) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 5. Alleles at the Pm1 locus. Theor Appl Genet 96:1129–1134

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Zeller FJ, Wenzel G, Mohler V (2000) Molecular mapping of the wheat powdery mildew resistance gene Pm24 and marker validation for molecular breeding. Theor Appl Genet 101:407– 414

    Article  CAS  Google Scholar 

  • Huang XQ, Hsam SLK, Mohler V, Röder MS, Zeller FJ (2004) Genetic mapping of three alleles at the Pm3 locus conferring powdery mildew resistance in common wheat (Triticum aestivum L.). Genome 47:1130–1136

    Article  PubMed  CAS  Google Scholar 

  • Kam-Morgan LNW, Gill BS, Muthukrishnan S (1989) DNA restriction fragment length polymorphisms: a strategy for genetic mapping of D genome of wheat. Genome 32:724–732

    CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lamari L, Bernier CC (1989) Evaluation of wheat lines and cultivars to tan spot (Pyrenophora tritici-repentis) based on lesion type. Can J Plant Pathol 11:49–56

    Article  Google Scholar 

  • Lamari L, Bernier CC (1991) Genetics of tan necrosis and extensive chlorosis in tan spot of wheat caused by Pyrenophora tritici-repentis. Phytopathology 81:1092–1095

    Google Scholar 

  • Lamari L, Strelkov SE, Yahyaoui A, Orabi J, Smith RB (2003) The identification of two new races of Pyrenophora tritici-repentis from the host center of diversity confirms a one-to-one relationship in tan spot of wheat. Phytopathology 93:391–396

    CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lee TS, Gough FJ (1984) Inheritance of Septoria leaf blotch (S. tritici) and Pyrenophora (P. tritici-repentis) resistance in Triticum aestivum cv. Carifen 12. Plant Dis 68:848–851

    Google Scholar 

  • Liu XM, Smith CM, Friebe BR, Gill BS (2005) Molecular mapping and allelic relationships of Russian wheat aphid-resistance genes. Crop Sci 45:2273–2280

    Article  CAS  Google Scholar 

  • Miller AC, Altinkut A, Lapitan NLV (2001) A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41:1584–1589

    Article  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L.em Thell). 9. Gene MIZec1 from Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Nagle BJ, Frohberg RC, Hosford Jr RM (1982) Inheritance of resistance to tan spot of wheat. In: Hosford RM Jr (eds) Tan spot of wheat and related diseases. State University, North Dakota, pp 40–45

    Google Scholar 

  • Rees RG, Platz GJ, Mayer RJ (1988) Susceptibility of Australian wheats to Pyrenophora tritici-repentis. Aust J Agric Res 39:141–151

    Article  Google Scholar 

  • Riede CR, Francl LJ, Anderson JA, Jordahl JG, Meinhardt SW (1996) Additional sources of resistance to tan spot of wheat. Crop Sci 36:771–777

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatilite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgenson RA, Allard RW (1984) Ribosomal spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    Article  PubMed  CAS  Google Scholar 

  • Siedler H, Obst A, Hsam SLK, Zeller FJ (1994). Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauchii Coss. and synthetic hexaploid wheat amphiploids. Genet Resour Crop Evol 41:27–34

    Article  Google Scholar 

  • Singh PK, Hughes GR (2005) Genetic control of resistance to tan necrosis induced by Pyrenophora tritici-repentis, race 1 and race 2, in spring and winter wheat genotypes. Phytopathology 95:172–177

    CAS  PubMed  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshal DS, Gill BS (2004) Lr41, Lr39 and a leaf rust resistance gene from Aegilops cylinderica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene confering resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    CAS  PubMed  Google Scholar 

  • Singrün C, Hsam SLK, Hartl L, Zeller FJ, Mohler V (2004) Localization of a novel recessive powdery mildew resistance gene from common wheat line RD30 in the terminal region of chromosome 7AL. Theor Appl Genet 109:210–214

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Tadesse W, Hsam SLK, Wenzel G, Zeller FJ (2006a) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (Triticum turgidum L. x Aegilops tauschii Coss.). Crop Sci 46:1212–1217

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2006b) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tekauz A, Mueller E, Beyene M, Stulzer M, Schultz D (2004) Leaf spot diseases of winter wheat in Manitoba in 2003. Can Plant Dis Survey 83:73–74

    Google Scholar 

  • Voorrips RE (2002) MapChart:Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Xu SS, Harris MO, Hu J, Liu L, Cai X (2006) Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113:611–618

    Article  PubMed  CAS  Google Scholar 

  • Wolf PFJ, Hoffmann GM (1993) Zur Biologie von Drechslera tritici-repentis (Died.) Shoem. (telomorph Pyrenophora tritici-repentis (Died.) Drechsler), dem Erreger einer Blattfleckenkrankheit an Weizen. Z Pfl Krankh Pflschutz 100:33–48

    Google Scholar 

  • Xu SS, Friesen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Zeller FJ, Hsam SLK (1998) Progress in breeding for resistance to powdery mildew in common wheat (Triticum aestivum L). In AE Slinkard (ed) Proceedings of the 9th international wheat genetics symposium, vol 1. University extension press, University of Saskatchewan, Saskatoon, pp 178–180

Download references

Acknowledgments

The first author is supported by a scholarship from the German Academic Exchange Service (DAAD), Bonn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Zeller.

Additional information

Communicated by A. Charcosset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadesse, W., Schmolke, M., Hsam, S.L.K. et al. Molecular mapping of resistance genes to tan spot [Pyrenophora tritici-repentis race 1] in synthetic wheat lines. Theor Appl Genet 114, 855–862 (2007). https://doi.org/10.1007/s00122-006-0484-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0484-y

Keywords

Navigation