Skip to main content
Log in

Performance elevation of bamboo flour/high-density polyethylene composites by pretreating bamboo flour with mussel adhesive proteins-inspired poly(catechol/amine)

  • Original Article
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

To elevate performance of bamboo flour/high-density polyethylene (BF/HDPE) composites, poly(catechol/amine) (i.e., an adhesive material inspired by mussel adhesive proteins) treatment of BF was researched for the first time. Influence of monomer type was surveyed by applying three representative monomers, i.e., catechol/diethylenetriamine (catechol/DETA), catechol/triethylenetetramine (catechol/TETA), and catechol/tetraethylenepentamine (catechol/TEPA). All the monomers constructed poly(catechol/amine) coatings on BF. Among treated BF, poly(catechol/amine) uploading was 7.21–15.16%, which enlarged the average diameter of BF by 17.53–24.33%. After treatment, the potential of BF to interact with other substances was raised. When using different monomers, fractal dimension and specific area of BF surface were promoted by 3.58–4.31% and 14.08–16.81%, respectively; catechol/DETA and catechol/TEPA also reduced water-BF contact angle by 4.05–6.03°, and increased adhesion work by 8.50–12.69%. The treated BF showed a better interfacial bonding with HDPE, which was verified by physical–mechanical properties of composites. With the change of catechol/amine, composites made from treated BF exhibited a decrease in pore volume and 720 h water absorption by 6.71–15.49% and 42.57–46.54%, respectively, and an increase in flexural strength and distortion temperature by 13.13–23.14% and 3.60–7.30 °C, respectively. Overall, the optimal property enhancement for composites was observed in poly(catechol/TEPA) treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (32171707), Beijing Natural Science Foundation (6202024), and Science & Technology Research and Development Program of Guizhou Forestry Administration for Rural Industrial Revolution and Characteristic Forestry Industry (GZMC-ZD20202112).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Song, Shuangbao Zhang, Benhua Fei or Rongjun Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Zhang, S., Fei, B. et al. Performance elevation of bamboo flour/high-density polyethylene composites by pretreating bamboo flour with mussel adhesive proteins-inspired poly(catechol/amine). Eur. J. Wood Prod. 81, 451–466 (2023). https://doi.org/10.1007/s00107-022-01876-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-022-01876-6

Navigation