Skip to main content
Log in

Comparison of intraoperative 2D vs. 3D imaging in open reduction and fixation of distal radius fractures

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Purpose

In the volar plating of distal radius fractures, intraoperative three-dimensional (3D) imaging is designed to allow better judgment regarding screw and implant positioning compared with conventional intraoperative two-dimensional (2D) imaging. We evaluated the impact of these two imaging modalities on the rates of intraoperative revision and secondary surgery, as well as the need for implant removal during follow-up.

Methods

A retrospective analysis of consecutive patients who underwent volar plate osteosynthesis for isolated distal radius fractures between January 2008 and April 2016 was performed. Patient files were evaluated for intraoperative imaging findings, intraoperative and postoperative revision rates, and implant removal during follow-up. Additional analyses of radiation exposure, operation time, and hospitalization time were performed.

Results

A total of 314 patients were analyzed (mean age: 54 ± 19 years; 210 females). For 246 patients, only 2D imaging was performed, while the remaining 68 patients underwent both 2D and 3D imaging (O-Arm, Medtronic). The intraoperative revision rate was significantly (p < 0.001) higher with 3D imaging (32.4%) compared with 2D imaging (2.0%). The postoperative revision rates were similar between both the groups (2.9% vs. 2.0%; p = 0.674). Compared with 2D imaging, the use of the Medtronic O-Arm resulted in a significantly lower implant removal rate (8.8% vs. 18.7%; p = 0.036) during follow-up.

Conclusion

Compared with conventional 2D imaging, the use of intraoperative 3D imaging significantly increased the intraoperative revision rate and has the potential for positive long-term effects for lowering the risk of requiring an implant removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nana AD, Joshi A, Lichtman DM. Plating of the distal radius. J Am Acad Orthop Surg. 2005;13(3):159–71.

    Article  Google Scholar 

  2. Messer TM. Complications of volar plate fixation for managing distal. J Am Acad Orthop Surg. 2009;17(6):369–77.

    Article  Google Scholar 

  3. Academy A, Board OS, December D. (2009) The treatment of distal radius fractures. Guidline and Evidence Report. Am Acad Orthop Surg Clin Pract Guid AAOS v1 0 12.05.09.

  4. Orbay J. Volar plate fixation of distal radius fractures. Hand Clin. 2005;21:347–54.

    Article  Google Scholar 

  5. Kvernmo HD, Krukhaug Y. Behandling av distale radiusfrakturer. Tidsskr den Nor Laegeforening. 2013;133:405–10. https://doi.org/10.4045/tidsskr.12.0297.

    Article  Google Scholar 

  6. Loisel F, Kielwasser H, Faivre G, et al. Treatment of distal radius fractures with locking plates: an update. Eur J Orthop Surg Traumatol doi. 2018. https://doi.org/10.1007/s00590-018-2274-z.

    Article  Google Scholar 

  7. Cui Z, Pan J, Yu B, et al. Internal versus external fixation for unstable distal radius fractures: an up-to-date meta-analysis. Int Orthop. 2011;35:1333–41. https://doi.org/10.1007/s00264-011-1300-0.

    Article  PubMed  PubMed Central  Google Scholar 

  8. von Recum J, Wendl K, Grützner PA, et al (2007) Distale Radiusfakturen. Trauma und Berufskrankheit. https://doi.org/10.1007/s10039-007-1210-y.

    Article  Google Scholar 

  9. Catalano LW, Barron OA, Glickel SZ. (2004) Assessment of articular displacement of distal radius fractures. Clin Orthop Relat Res 79–84. https://doi.org/10.1097/01.blo.0000132884.51311.28.

  10. Ozer K, Wolf JM, Watkins B, Hak DJ. Comparison of 4 fluoroscopic views for dorsal cortex screw penetration after volar plating of the distal radius. J Hand Surg Am. 2012;37:963–7. https://doi.org/10.1016/j.jhsa.2012.02.026.

    Article  PubMed  Google Scholar 

  11. Park DH, Tr F, Goldie BS. Volar plating for distal radius fractures—do not trust the image intensifier when judging distal subchondral screw length.

  12. Al-Rashid M, Theivendran K, Craigen MAC. Delayed ruptures of the extensor tendon secondary to the use of volar locking compression plates for distal radial fractures. J Bone Jt Surg [Br]. 2006;88:1610–12. https://doi.org/10.1302/0301-620X.88B12.

    Article  CAS  Google Scholar 

  13. Benson EC, DeCarvalho A, Mikola E, et al. Two potential causes of EPL rupture after distal radius volar plate fixation. Clin Orthop Relat Res. 2006;451:218–22. https://doi.org/10.1097/01.blo.0000223998.02765.0d.

    Article  PubMed  Google Scholar 

  14. Benson LS, Minihane KP, Stern LD, et al. The outcome of intra-articular distal radius fractures treated with fragment-specific fixation. J Hand Surg Am. 2006;31:1333–9. https://doi.org/10.1016/j.jhsa.2006.07.004.

    Article  PubMed  Google Scholar 

  15. Jupiter JB, Marent-Huber M. Operative management of distal radial fractures with 2.4-millimeter locking plates. A multicenter prospective case series. J Bone Joint Surg Am. 2009;91:55–65. https://doi.org/10.2106/JBJS.G.01498.

    Article  PubMed  Google Scholar 

  16. Franke J, Vetter SY, Beisemann N, et al. 3-D-Sicherheit bei gelenknahen Osteosynthesen. Unfallchirurg. 2016;119:803–10. https://doi.org/10.1007/s00113-016-0228-7.

    Article  CAS  PubMed  Google Scholar 

  17. von Recum J, Wendl K, Vock B, et al. Intraoperative 3D C-arm imaging. State of the art [German]. Unfallchirurg. 2012;115:196–201. https://doi.org/10.1007/s00113-011-2119-2.

    Article  Google Scholar 

  18. Hüfner T, Stübig T, Gösling T, et al (2007) Kosten- und nutzenanalyse der intraoperativen 3D-bildgebung. Unfallchirurg. https://doi.org/10.1007/s00113-006-1202-6.

    Article  PubMed  Google Scholar 

  19. Mehling I, Rittstieg P, Mehling AP, et al. Intraoperative C-arm CT imaging in angular stable plate osteosynthesis of distal radius fractures. J Hand Surg-Eur Vol. 2013;38:751–7. https://doi.org/10.1177/1753193413476418. doi.

    Article  CAS  PubMed  Google Scholar 

  20. Beck M, Mittlmeier T, Gierer P, et al. Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J. 2009;18:1469–77. https://doi.org/10.1007/s00586-009-1050-5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Grützner RP, Gebhard LF, Stengel UD, et al. Intraoperative 3-D-Bildgebung. Unfallchirurg. 2016;119:835–42. https://doi.org/10.1007/s00113-016-0245-6.

    Article  Google Scholar 

  22. Soong M, Got C, Katarincic J, Akelman E. Fluoroscopic evaluation of intra-articular screw placement during locked volar plating of the distal radius: a cadaveric study. J Hand Surg Am. 2008;33:1720–3. https://doi.org/10.1016/j.jhsa.2008.07.021.

    Article  PubMed  Google Scholar 

  23. Tweet ML, Calfee RP, Stern PJ. Rotational fluoroscopy assists in detection of intra-articular screw penetration during volar plating of the distal radius. J Hand Surg Am. 2010;35:619–27. https://doi.org/10.1016/j.jhsa.2009.12.033.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Theopold J, Weihs K, Marquaß B, et al. Detection of primary screw perforation in locking plate osteosynthesis of proximal humerus fracture by intra-operative 3D fluoroscopy. Arch Orthop Trauma Surg. 2017;137:1491–8. https://doi.org/10.1007/s00402-017-2763-2.

    Article  PubMed  Google Scholar 

  25. Sembrano JN Jr, Ledonio DWP, Santos CGT ERG. Intraoperative 3-dimensional imaging (O-arm) for assessment of pedicle screw position: does it prevent unacceptable screw placement ? IJSP. 2012;6:49–54. https://doi.org/10.1016/j.ijsp.2011.11.002.

    Article  Google Scholar 

  26. Santos ERG, Sembrano JN, Yson SC, Polly DWJ. Comparison of open and percutaneous lumbar pedicle screw revision rate using 3-D image guidance and intraoperative CT. Orthopedics. 2015;38:e129-34. https://doi.org/10.3928/01477447-20150204-61.

    Article  PubMed  Google Scholar 

  27. Meier R, Kfuri M, Geerling J, et al. [Intraoperative three-dimensional imaging with an isocentric mobile C-arm at the wrist]. Handchirurgie, Mikrochirurgie, Plast Chir Organ der Deutschsprachigen Arbeitsgemeinschaft für Handchirurgie Organ der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der Peripher Nerven und Gefässe. Organ der Vereinigung der Deut. 2005;37:256–9. https://doi.org/10.1055/s-2004-830563.

    Article  CAS  Google Scholar 

  28. Schnetzke M, Fuchs J, Vetter SY, et al. Intraoperative 3D imaging in the treatment of elbow fractures—a retrospective analysis of indications, intraoperative revision rates, and implications in 36 cases. BMC Med Imaging. 2016;16:24. https://doi.org/10.1186/s12880-016-0126-z.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Atesok K, Finkelstein J, Khoury A, et al. The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury. 2007;38:1163–9. https://doi.org/10.1016/j.injury.2007.06.014.

    Article  CAS  PubMed  Google Scholar 

  30. Beck M, Rotter R, Gradl G, et al. Reliability and consequences of intraoperative 3D imaging to control positions of thoracic pedicle screws. Arch Orthop Trauma Surg. 2012;132:1371–7. https://doi.org/10.1007/s00402-012-1555-y.

    Article  PubMed  Google Scholar 

  31. Navarro CM, Pettersson HJ, Enocson A. (2015) Complications after distal radius fracture surgery: results from a swedish nationwide registry study. J Orthop Trauma. 29:36–42. https://doi.org/10.1097/BOT.0000000000000199.

    Article  Google Scholar 

  32. Lattmann T, Meier C, Dietrich M, et al. Results of volar locking plate osteosynthesis for distal radial fractures. J Trauma. 2011;70:1510–8. https://doi.org/10.1097/TA.0b013e3181f13c6a.

    Article  PubMed  Google Scholar 

  33. Esenwein P, Sonderegger J, Gruenert J, et al. Complications following palmar plate fixation of distal radius fractures: a review of 665 cases. Arch Orthop Trauma Surg. 2013;133:1155–62. https://doi.org/10.1007/s00402-013-1766-x.

    Article  CAS  PubMed  Google Scholar 

  34. Beerekamp MSH, Sulkers GSI, Ubbink DT, et al. Accuracy and consequences of 3D-fluoroscopy in upper and lower extremity fracture treatment: a systematic review. Eur J Radiol. 2012;81:4019–28. https://doi.org/10.1016/j.ejrad.2012.06.021.

    Article  PubMed  Google Scholar 

  35. Reith G, Schmitz-Greven V, Hensel KO, et al. Metal implant removal: benefits and drawbacks—a patient survey. BMC Surg. 2015;15:1–8. https://doi.org/10.1186/s12893-015-0081-6.

    Article  CAS  Google Scholar 

  36. Costa F, Tosi G, Attuati L, et al. Radiation exposure in spine surgery using an image-guided system based on intraoperative cone-beam computed tomography: analysis of 107 consecutive cases. J Neurosurg Spine. 2016;25:654–9. https://doi.org/10.3171/2016.3.SPINE151139.

    Article  PubMed  Google Scholar 

Download references

Funding

No benefits or funding have been received or will be received from a commercial party, related directly or indirectly, to the subject of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Hammerle.

Ethics declarations

Ethical approval

The study has been conducted in compliance with ethical standards. This study was conducted following approval from the local ethics committee and was performed in accordance with the principles of the Declaration of Helsinki.

Conflict of interest

Diego Hammerle, Georg Osterhoff, Florin Allemann and Clement Werner declare that they have no conflict of interest.

Informed consent

Only patients that signed an informed consent to have their data used for research oat the University Hospital of Zürich where included in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammerle, D., Osterhoff, G., Allemann, F. et al. Comparison of intraoperative 2D vs. 3D imaging in open reduction and fixation of distal radius fractures. Eur J Trauma Emerg Surg 46, 557–563 (2020). https://doi.org/10.1007/s00068-018-1036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-018-1036-2

Keywords

Navigation