Skip to main content
Log in

Below and beyond the mass–energy threshold: scattering for the Hartree equation with radial data in \(\pmb {d \ge 5}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem of the focusing \(\dot{H}^{1/2}\)-critical Hartree equation

$$\begin{aligned} i u_{t} + \Delta u = - \Bigl ( |\cdot |^{-3} *|u(t)|^{2} \Bigr )u(t,x), \quad (t,x)\in {\mathbb {R}} \times {\mathbb {R}}^{d}. \end{aligned}$$

By adapting the methods in Dodson and Murphy (Proc Am Math Soc 145(11):4859–4867, 2017), we shall prove a scattering result for solutions both below and beyond the mass–energy threshold M(Q)E(Q) and uniformly describe both cases the boundary of the scattering region by the ground state’s mass and potential energy product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  2. Cazenave, T.: Semilinear Schrödinger Equations, Volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  3. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the 3D radial focusing cubic NLS. Proc. Am. Math. Soc. 145(11), 4859–4867 (2017)

    Article  MathSciNet  Google Scholar 

  4. Dodson, B., Murphy, J.: A new proof of scattering below the ground state for the non-radial focusing nls. Math. Res. Lett. 25(6), 1805–1825 (2018)

    Article  MathSciNet  Google Scholar 

  5. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation. Commun. Math. Phys. 334(3), 1573–1615 (2015)

    Article  MathSciNet  Google Scholar 

  6. Fröhlich, J., Lenzmann, E.: Mean-field limit of quantum Bose gases and nonlinear Hartree equation. In: Séminaire: Équations aux Dérivées Partielles. 2003–2004, Sémin. Équ. Dériv. Partielles, pages Exp. No. XIX, 26. École Polytech., Palaiseau (2004)

  7. Gao, Y., Wang, Z.: Scattering versus blow-up for the focusing \(L^2\) supercritical Hartree equation. Z. Angew. Math. Phys. 65(1), 179–202 (2014)

    Article  MathSciNet  Google Scholar 

  8. Guo, Z., Nakanishi, K.: The Zakharov system in 4D radial energy space below the ground state (2018). arXiv e-prints, arXiv:1810.05794

  9. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282(2), 435–467 (2008)

    Article  Google Scholar 

  10. Kenig, C.E., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    Article  MathSciNet  Google Scholar 

  11. Killip, R., Visan, M.: The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Am. J. Math. 132(2), 361–424 (2010)

    Article  Google Scholar 

  12. Li, D., Miao, C., Zhang, X.: The focusing energy-critical Hartree equation. J. Differ. Equ. 246(3), 1139–1163 (2009)

    Article  MathSciNet  Google Scholar 

  13. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19(1), 773–813 (2017)

    Article  MathSciNet  Google Scholar 

  14. Miao, C., Guixiang, X., Zhao, L.: The Cauchy problem of the Hartree equation. J. Partial Differ. Equ. 21(1), 22–44 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Miao, C., Guixiang, X., Zhao, L.: Global well-posedness and scattering for the mass-critical Hartree equation with radial data. J. Math. Pures Appl. (9) 91(1), 49–79 (2009)

    Article  MathSciNet  Google Scholar 

  16. Sun, C., Wang, H., Yao, X., Zheng, J.: Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete Contin. Dyn. Syst. 38(4), 2207–2228 (2018)

    Article  MathSciNet  Google Scholar 

  17. Tao, T.: On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation. Dyn. Partial Differ. Equ. 1(1), 1–48 (2004)

    Article  MathSciNet  Google Scholar 

  18. Tao, T.: Nonlinear Dispersive Equations, Volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, Local and Global Analysis (2006)

  19. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87(4), 567–576 (1982/83)

  20. Yang, L., Li, X., Yonghong, W., Caccetta, L.: Global well-posedness and blow-up for the Hartree equation. Acta Math. Sci. Ser. B (Engl. Ed.) 37(4), 941–948 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jiqiang Zheng for useful discussions. Y. Gao is supported in part by NSFC (Nos. 11501111 and 11771082). Y. Gao thanks the China Scholarship Council (CSC) (No. 201808350018) for fellowship support. Z. Wang is supported in part by NSFC (Nos. 11601082 and 11501111), the Foundation of the Science and Technology Department of Fujian Province (No. 2017J05002) and Foundation of the Education Department of Fujian Province (No. JA15110). Z. Wang thanks Fujian Normal University for fellowship support. Both authors would like to thank the referees for their useful comments and suggestions of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Construct a scattering solution with initial datum beyond the mass–energy threshold

Appendix A: Construct a scattering solution with initial datum beyond the mass–energy threshold

In appendix, we shall construct a scattering solution with initial datum beyond the mass–energy threshold in Corollary A.3 following the process used in [5, Corollary 1.12].

First, we introduce the virial quantity. Let u(tx) be a solution of (1.1) and denote the virial quantity \(V(t) = \mathop {\int }\limits _{{\mathbb {R}}^{d}} |x|^{2}|u(t,x)|^{2}\,\mathrm {d}x.\) If \(V(0) < \infty \), a direct computation using the equation (1.1) yields

$$\begin{aligned} V'(t)= & {} 4 {{\,\mathrm{Im}\,}}\mathop {\int }\limits _{{\mathbb {R}}^d} x \cdot \nabla u(t, x) {\bar{u}}(t, x) \,\mathrm d x. \end{aligned}$$
(A.1)
$$\begin{aligned} V''(t)= & {} 8 \mathop {\int }\limits _{{\mathbb {R}}^{d}}|\nabla u(t)|^{2}\,\mathrm {d}x - 6 \mathop {\int }\limits _{{\mathbb {R}}^{d}} (|\cdot |^{-3}*|u|^{2})|u|^{2}(t,x)\,\mathrm {d}x \nonumber \\= & {} 16 E(u) - 2P(u(t)). \end{aligned}$$
(A.2)

Yang et al. proved a general global well-posedness theorem in [20]. Here we summarize their results in the version that we need.

Theorem A.1

([20, Theorem 3.1 with \(s_{c} = 1/2\)]) Let u(tx) be a solution of (1.1), assume \(u_{0} \in H^{1}(R^{d})\) and \(V(0) < \infty \). If

$$\begin{aligned}&M(u)E(u) \ge M(Q)E(Q), \end{aligned}$$
(A.3)
$$\begin{aligned}&\frac{M(u)E(u)}{M(Q)E(Q)}\Bigl ( 1 - \frac{(V'(0))^{2}}{32 E(u)V(0)} \Bigr ) \le 1, \end{aligned}$$
(A.4)
$$\begin{aligned}&M(u_{0}) P(u_{0})<M(Q)P(Q), \end{aligned}$$
(A.5)

and

$$\begin{aligned} V'(0)\ge 0. \end{aligned}$$
(A.6)

Then, u(tx) exists globally, and

$$\begin{aligned} \sup _{t\in [0,\infty )}M(u(t)) P(u(t)) < M(Q)P(Q). \end{aligned}$$
(A.7)

Remark A.2

Instead of (A.7), the authors in [20] proved that

$$\begin{aligned} \limsup \limits _{t\rightarrow +\infty }M(u(t)) P(u(t)) < M(Q)P(Q), \end{aligned}$$

which is the same as Theorem 1.4 in [5] for nonlinear Schrödinger equation. Reviewing the proof in [20], one finds that (A.7) can be also obtained.

Next, we shall construct a scattering solution with initial datum beyond the mass–energy threshold by Theorem A.1.

Corollary A.3

Let \(\gamma > 0\) and \(Q^{\gamma }(t,x)\) be the solution of (1.1) with initial datum

$$\begin{aligned} Q_{0}^{\gamma } = e^{i \gamma |x|^{2}} Q(x), \end{aligned}$$

where Q is the ground state solution of (1.2), which is a real positive function. Then, there exists a small positive \(t_{0}\) such that

$$\begin{aligned} Q_{t_{0}}^{\gamma }(t,x) = Q^{\gamma }(t_{0} + t,x) \end{aligned}$$

is a forward global solution with initial datum beyond the mass–energy threshold

$$\begin{aligned} M(Q^{\gamma }(t_{0})) E(Q^{\gamma }(t_{0})) > M(Q)E(Q), \end{aligned}$$

and

$$\begin{aligned} \sup _{t\in [0,\infty )}M(Q_{t_{0}}^{\gamma }(t)) P(Q_{t_{0}}^{\gamma }(t)) < M(Q)P(Q). \end{aligned}$$
(A.8)

Proof

We shall check the conditions in Theorem A.1 step by step.

By the local theory and the identity

$$\begin{aligned} {{\,\mathrm{Im}\,}}\mathop {\int }\limits _{{\mathbb {R}}^{d}} x \cdot \nabla Q_{0}^{\gamma } \overline{Q_{0}^{\gamma }} \,\mathrm {d}x = 2 \gamma \mathop {\int }\limits _{{\mathbb {R}}^{d}} |xQ|^{2}\,\mathrm {d}x, \end{aligned}$$

we see that for \(\gamma > 0\),

$$\begin{aligned} {{\,\mathrm{Im}\,}}\mathop {\int }\limits _{{\mathbb {R}}^{d}} x \cdot \nabla Q_{t_{0}}^{\gamma } \overline{Q_{t_{0}}^{\gamma }} \,\mathrm {d}x > 0 \quad \text { for small } t_{0}. \end{aligned}$$

Thus, by the formula (A.1), \(V'(0) > 0\) for the solution \(Q^{\gamma }_{t_{0}}(t,x)\). And (A.6) is satisfied.

Let \(P(t) = P(u(t))\). If \(u\) is a solution of (1.1), then by formal calculation,

$$\begin{aligned} \frac{\mathrm {d}P}{\mathrm {d}t}&= \mathop {\int }\limits _{{\mathbb {R}}^{d}} [|\cdot |^{-3}*(u_{t} \bar{u} + \overline{u}_{t} u) ] |u(t,x)|^{2} \,\mathrm {d}x + \mathop {\int }\limits _{{\mathbb {R}}^{d}} [|\cdot |^{-3}*|u|^{2} ] (u_{t} \bar{u} + \overline{u}_{t} u)(t,x) \,\mathrm {d}x \\&= 2 \mathop {\int }\limits _{{\mathbb {R}}^{d}} [|\cdot |^{-3}|u|^{2} ] (u_{t} \bar{u} + \overline{u}_{t} u)(t,x) \,\mathrm {d}x \\&= -4\mathop {\int }\limits _{{\mathbb {R}}^{d}} (|\cdot |^{-3} *|u(t)|^{2}) {{\,\mathrm{Im}\,}}(\Delta u {\bar{u}})(t,x)\,\mathrm {d}x. \end{aligned}$$

Let \(u(t) = Q^{\gamma }(t)\). Since Q(x) is real, we have \({{\,\mathrm{Im}\,}}(\Delta u(0) \overline{u(0)}) = 2 \gamma (d Q^{2} + 2x Q \nabla Q) = 2 \gamma \nabla \cdot (x Q^{2})\).

An integral by parts and a change of variables yield

$$\begin{aligned} \frac{\mathrm {d}P(0)}{\mathrm {d}t}&= -8\gamma \mathop {\int }\limits _{{\mathbb {R}}^{d}} (|\cdot |^{-3} *Q^{2}) \nabla _{x} \cdot (xQ^{2}) \,\mathrm {d}x \nonumber \\&= -8 \gamma \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \frac{Q^{2}(y)}{|x-y|^{3}} \nabla _{x} \cdot (xQ^{2}(x))\,\mathrm {d}x \mathrm {d}y\nonumber \\&= 8 \gamma \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \Bigl ( \nabla _{x} \frac{1}{|x-y|^{3}} \Bigr ) Q^{2}(y) (xQ^{2}(x))\,\mathrm {d}x \mathrm {d}y\nonumber \\&= -24 \gamma \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \frac{(x-y)\cdot x}{|x-y|^{5}} Q^{2}(y) Q^{2}(x)\,\mathrm {d}x \mathrm {d}y\nonumber \\&= -12 \gamma \Bigl ( \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \frac{(x-y)\cdot x}{|x-y|^{5}} Q^{2}(y) Q^{2}(x)\,\mathrm {d}x \mathrm {d}y \nonumber \\&\qquad + \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \frac{(y-x)\cdot y}{|x-y|^{5}} Q^{2}(x) Q^{2}(y)\,\mathrm {d}x \mathrm {d}y \Bigr ) \nonumber \\&\quad = -12\gamma \iint _{{\mathbb {R}}^{d}\times {\mathbb {R}}^{d}} \frac{Q^{2}(x) Q^{2}(y) }{|x-y|^{3}} \,\mathrm {d}x \mathrm {d}y \nonumber \\&\quad < 0. \end{aligned}$$
(A.9)

Thus, for small positive \(t_{0}\),

$$\begin{aligned} P(t_{0}) < P(0) = P (Q). \end{aligned}$$

So for the solution \(Q^{\gamma }_{t_{0}}\), the condition (A.5) is fulfilled.

By the Pohozaev identities (2.1), \(E(Q) = \frac{1}{2}\mathop {\int }\limits _{{\mathbb {R}}^{d}}|Q|^{2}\,\mathrm {d}x > 0\). By conservation of mass and energy,

$$\begin{aligned} M(Q^{\gamma }_{t_{0}}) = M(Q^{\gamma }_{0}) = M(Q), \end{aligned}$$

and

$$\begin{aligned} E(Q^{\gamma }_{t_{0}}) = E(Q^{\gamma }_{0})&= E(Q) + 2 \gamma ^{2} \mathop {\int }\limits _{{\mathbb {R}}^{d}} |xQ(x)|^{2}\,\mathrm {d}x \nonumber \\&> E(Q)>0. \end{aligned}$$
(A.10)

Thus, \(M(Q^{\gamma }_{t_{0}}) E(Q^{\gamma }_{t_{0}}) > M(Q)E(Q)\), which is (A.3).

To show that \(Q_{t_{0}}^{\gamma }\) obeys (A.4), we define

$$\begin{aligned} F(t) = M(Q^{\gamma }) \left( E(Q^{\gamma }) - \frac{\bigl ({{\,\mathrm{Im}\,}}\mathop {\int }\limits _{{\mathbb {R}}^{d}} x \cdot \nabla Q^{\gamma } (t) \overline{Q^{\gamma }} (t)\,\mathrm {d}x\bigr )^{2}}{2 \mathop {\int }\limits _{{\mathbb {R}}^{d}} |x|^{2}|Q^{\gamma }(t)|^{2} \,\mathrm {d}x} \right) -M(Q) E(Q). \end{aligned}$$

We claim that

$$\begin{aligned} F(0) = F'(0) = 0 \quad \text {and}\quad F''(0)<0. \end{aligned}$$
(A.11)

Note that \(t=0\), \({{\,\mathrm{Im}\,}}\mathop {\int }\limits _{{\mathbb {R}}^{d}} x \cdot \nabla Q^{\gamma } (0) \overline{Q^{\gamma }} (0)\,\mathrm {d}x = 2 \gamma \mathop {\int }\limits _{{\mathbb {R}}^{d}} |xQ|^{2}\,\mathrm {d}x\). Therefore, \(F(0) = 0\) by (A.10). Let

$$\begin{aligned} V(t) = \mathop {\int }\limits _{{\mathbb {R}}^{d}}|xQ^{\gamma }(t)|^{2}\,\mathrm {d}x, \quad z(t) = \sqrt{V(t)}. \end{aligned}$$

F(t) can be rewritten as

$$\begin{aligned} F(t) = M(Q^{\gamma }) \Bigl ( E(Q^{\gamma }) - \frac{1}{8} (z_{t})^{2}\Bigr ) -M(Q) E(Q). \end{aligned}$$

By conservation of mass and energy, we have

$$\begin{aligned} \frac{\mathrm {d}F(t)}{\mathrm {d}t} = -\frac{M(Q)}{4}z_{t}z_{tt}, \end{aligned}$$

and

$$\begin{aligned} \frac{\mathrm {d^{2}}F(t)}{\mathrm {d}t^{2}} = -\frac{M(Q)}{4}(z^{2}_{tt} + z_{t}z_{ttt}). \end{aligned}$$

By invoking (A.1), (A.2) and the Pohozaev identities \(\mathop {\int }\limits _{{\mathbb {R}}^{d}} |\nabla Q|^{2} \,\mathrm {d}x = 3\mathop {\int }\limits _{{\mathbb {R}}^{d}}|Q|^{2}\,\mathrm {d}x\) and \(P(Q) = 4 \mathop {\int }\limits _{{\mathbb {R}}^{d}}|Q|^{2}\,\mathrm {d}x\), we get

$$\begin{aligned} V_{t}(0) = 8 \gamma \mathop {\int }\limits _{{\mathbb {R}}^{d}} |xQ|^{2}\,\mathrm {d}x, \quad \text {and} \quad V_{tt}(0) = 32 \gamma ^{2}\mathop {\int }\limits _{{\mathbb {R}}^{d}} |xQ|^{2}\,\mathrm {d}x. \end{aligned}$$

Then, we get for \(\gamma > 0\)

$$\begin{aligned} z_{t}(0) > 0, \quad z_{tt}(0) = \frac{1}{4}V^{-3/2} \Bigl ( 2V(0)V_{tt}(0) - (V_{t}(0))^{2} \Bigr ) = 0. \end{aligned}$$

Thus,

$$\begin{aligned} F'(0)= 0, \end{aligned}$$

and

$$\begin{aligned} {{\,\mathrm{sgn}\,}}(F''(0)) = -{{\,\mathrm{sgn}\,}}(z_{ttt}(0)), \end{aligned}$$
(A.12)

where \({{\,\mathrm{sgn}\,}}(s) = \frac{s}{|s|}\) for \(s \ne 0\) and \({{\,\mathrm{sgn}\,}}(0) = 0\).

Since \(V(t) = (z(t))^{2}\), we have \(V_{ttt} = 6 z_{t}z_{tt} + 2 z z_{ttt}\), which together with \(z_{tt}(0) = 0\) and (A.12) implies that \({{\,\mathrm{sgn}\,}}(-V_{ttt}(0)) = {{\,\mathrm{sgn}\,}}(F''(0))\). Meanwhile, we get from (A.2) that

$$\begin{aligned} {{\,\mathrm{sgn}\,}}(-V_{ttt}(0)) = {{\,\mathrm{sgn}\,}}\left( \frac{\mathrm {d}P(0)}{\mathrm {d}t}\right) . \end{aligned}$$

Thus, \(F''(0) < 0\) due to (A.9). The claim (A.11) is proved. As a consequence, there exists \(t_{0} > 0\) such that \(F(t_{0}) < 0\). Taking the initial datum \(u_{0}(x) = Q^{\gamma }(t_{0},x)\), which fulfills the assumptions of Theorem A.1, we get (A.8). \(\square \)

By (A.8) and Theorem 1.1, \(Q_{t_{0}}^{\gamma }(t,x)\) scatters forward in time.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wang, Z. Below and beyond the mass–energy threshold: scattering for the Hartree equation with radial data in \(\pmb {d \ge 5}\). Z. Angew. Math. Phys. 71, 52 (2020). https://doi.org/10.1007/s00033-020-1274-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-1274-0

Keywords

Mathematics Subject Classification

Navigation