Skip to main content
Log in

Decay estimates of solutions to the bipolar compressible Euler–Poisson system in \(\pmb {\mathbb {R}^3}\)

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This work is concerned with the bipolar compressible Euler–Poisson equations with damping in three-dimensional space. We consider the optimal decay rates of the solution to the Cauchy problem, provided that the initial perturbation at the constant equilibrium state is sufficiently small. Under some assumptions of the initial data, we show that the solution to the Cauchy problem converges to its constant equilibrium state at the exact same \(L^2\) decay rates as the linearized equations, which shows the convergence rates are sharp. The proof is based on the spectral analysis of the semigroup generated by the linearized equations and the nonlinear energy estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alí, G., Jüngel, A.: Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasmas. J. Differ. Equ. 190(2), 663–685 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bae, J., Kwon, B.: Small amplitude limit of solitary waves for the Euler–Poisson system. J. Differ. Equ. 266(6), 3450–3478 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Bae, M., Weng, S.K.: \(3D\) axisymmetric subsonic flows with nonzero swirl for the compressible Euler–Poisson system. Ann. Inst. Henri Poincaré Anal. Non Linéaire 35(1), 161–186 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Chen, F.: Introduction to Plasma Physics and Controlled Fusion, vol. 1. Plenum Press, New York (1984)

    Google Scholar 

  5. Degond, P., Markowich, P.A.: A steady-state potential flow model for semiconductors. Ann. Mat. Pura Appl. 165(4), 87–98 (1993)

    MathSciNet  MATH  Google Scholar 

  6. Donatelli, D., Mei, M., Rubino, B., Sampalmieri, R.: Asymptotic behavior of solutions to Euler–Poisson equations for bipolar hydrodynamic model of semiconductors. J. Differ. Equ. 255(10), 3150–3184 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Duan, R.J., Ruan, L.Z., Zhu, C.J.: Optimal decay rates to conservation laws with diffusion-type terms of regularity-gain and regularity-loss. Math. Models Methods Appl. Sci. 22(7), 1250012 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier–Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17(5), 737–758 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Gasser, I., Hsiao, L., Li, H.L.: Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors. J. Differ. Equ. 192(2), 326–359 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Germain, P., Masmoudi, N., Pausader, B.: Nonneutral global solutions for the electron Euler–Poisson system in three dimensions. SIAM J. Math. Anal. 45(1), 267–278 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Guo, Y.: Smooth irrotational flows in the large to the Euler–Poisson system in \(\mathbb{R}^{3+1}\). Commun. Math. Phys. 195(2), 249–265 (1998)

    MATH  Google Scholar 

  12. Guo, Y., Han, L.J., Zhang, J.J.: Absence of shocks for one dimensional Euler–Poisson system. Arch. Ration. Mech. Anal. 223(3), 1057–1121 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Guo, Y., Strauss, W.: Stability of semiconductor states with insulating and contact boundary conditions. Arch. Ration. Mech. Anal. 179(1), 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hsiao, L., Markowich, P.A., Wang, S.: The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors. J. Differ. Equ. 192(1), 111–133 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Hsiao, L., Zhang, K.J.: The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors. Math. Models Methods Appl. Sci. 10(9), 1333–1361 (2000)

    MathSciNet  MATH  Google Scholar 

  16. Hsiao, L., Zhang, K.J.: The relaxation of the hydrodynamic model for semiconductors to drift diffusion equations. J. Differ. Equ. 165(2), 315–354 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Huang, F.M., Mei, M., Wang, Y.: Large time behavior of solutions to \(n\)-dimensional bipolar hydrodynamic model for semiconductors. SIAM J. Math. Anal. 43(4), 1595–1630 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Huang, F.M., Mei, M., Wang, Y., Yang, T.: Long-time behavior of solutions to the bipolar hydrodynamic model of semiconductors with boundary effect. SIAM J. Math. Anal. 44(2), 1134–1164 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Huang, F.M., Mei, M., Wang, Y., Yu, H.M.: Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors. SIAM J. Math. Anal. 43(1), 411–429 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Huang, F.M., Mei, M., Wang, Y., Yu, H.M.: Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconductors. J. Differ. Equ. 251(4–5), 1305–1331 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Ionescu, A.D., Pausader, B.: The Euler–Poisson system in \(2D\): global stability of the constant equilibrium solution. Int. Math. Res. Not. IMRN 4, 761–826 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Jüngel, A.: Quasi-Hydrodynamic Semiconductor Equations. Progress Nonlinear Differential Equations and Their Application, vol. 41. Birkhäuser Verlag, Basel (2001)

    MATH  Google Scholar 

  23. Jung, C.Y., Kwon, B., Suzuki, M.: Quasi-neutral limit for the Euler–Poisson system in the presence of plasma sheaths with spherical symmetry. Math. Models Methods Appl. Sci. 26(12), 2369–2392 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jüngel, A., Peng, Y.J.: A hierarchy of hydrodynamic models for plasmas: zero-relaxation time limits. Commun. Partial Differ. Equ. 24(5–6), 1007–1033 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Lattanzio, C.: On the \(3D\) bipolar isentropic Euler–Poisson model for semiconductors and the drift–diffusion limit. Math. Models Methods Appl. Sci. 10(3), 351–360 (2000)

    MathSciNet  MATH  Google Scholar 

  26. Li, Y.P.: Global existence and asymptotic behavior of solutions to the nonisentropic bipolar hydrodynamic models. J. Differ. Equ. 250(3), 1285–1309 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Li, H.L., Matsumura, A., Zhang, G.J.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \(\mathbb{R}^3\). Arch. Ration. Mech. Anal. 196(2), 681–713 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Li, H.L., Markowich, P., Mei, M.: Asymptotic behavior of solutions of the hydrodynamic model of semiconductors. Proc. R. Soc. Edinb. Sect. A 132, 359–378 (2002)

    MATH  Google Scholar 

  29. Li, Y.P., Yang, X.F.: Global existence and asymptotic behavior of the solutions to the three-dimensional bipolar Euler–Poisson systems. J. Differ. Equ. 252(1), 768–791 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Li, Y.P., Zhang, T.: Relaxation time limit of the multidimensional bipolar hydrodynamic model in Besov space. J. Differ. Equ. 251(11), 3143–3162 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Liu, C.M., Peng, Y.J.: Convergence of a non-isentropic Euler–Poisson system for all time. J. Math. Pures Appl. 119(9), 255–279 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Poisson system. J. Differ. Equ. 262(11), 5497–5517 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Luo, T., Natalini, R., Xin, Z.P.: Large time behavior of the solutions to a hydrodynamic model for semiconductors. SIAM J. Appl. Math. 59(3), 810–830 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Markowich, P.A., Ringhofev, C.A., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)

    Google Scholar 

  35. Mei, M., Rubino, B., Sampalmieri, R.: Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinet. Relat. Models 3(5), 537–550 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Natalini, R.: The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation. J. Math. Anal. Appl. 198(1), 262–281 (1996)

    MathSciNet  MATH  Google Scholar 

  37. Nishibata, S., Suzuki, M.: Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductors. Arch. Ration. Mech. Anal. 192(2), 187–215 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Nishibata, S., Suzuki, M.: Asymptotic stability of a stationary solution to a hydrodynamic model for semiconductors. Osaka J. Math. 44(3), 639–665 (2007)

    MathSciNet  MATH  Google Scholar 

  39. Peng, Y.J.: Uniformly global smooth solutions and convergence of Euler–Poisson systems with small parameters. SIAM J. Math. Anal. 47(2), 1355–1376 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Peng, Y.J., Xu, J.: Global well-posedness of the hydrodynamic model for two-carrier plasmas. J. Differ. Equ. 255(10), 3447–3471 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Schonbek, M.E.: Lower bounds of rates of decay for solutions to the Navier–Stokes equations. J. Am. Math. Soc. 4(3), 423–449 (1991)

    MathSciNet  MATH  Google Scholar 

  42. Schonbek, M.E.: Large time behavior of solutions to the Navier–Stokes equations. Commun. Partial Differ. Equ. 11(7), 733–763 (1986)

    MATH  Google Scholar 

  43. Sitenko, A., Malnev, V.: Plasma Physics Theory. Applied Mathematics and Mathematical Computation, vol. 10. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  44. Tadmor, E., Wei, D.M.: On the global regularity of subcritical Euler–Poisson equations with pressure. J. Eur. Math. Soc. (JEMS) 10(3), 757–769 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Tong, L.L., Tan, Z.: Optimal decay rates of the compressible magneto-micropolar fluids system in \(\mathbb{R}^3\). Commun. Math. Sci. 4(17), 1109–1134 (2019)

    MATH  Google Scholar 

  46. Tsuge, N.: Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic models of semiconductors. Nonlinear Anal. 73(3), 779–787 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Tsuge, N.: Uniqueness of the stationary solutions for a fluid dynamical model of semiconductors. Osaka J. Math. 46(4), 931–937 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Wang, D.H.: Global solutions to the Euler–Poisson equations of two-carrier types in one dimension. Z. Angew. Math. Phys. 48(4), 680–693 (1997)

    MathSciNet  MATH  Google Scholar 

  49. Wu, Z.G., Li, Y.P.: Pointwise estimates of solutions for the multi-dimensional bipolar Euler–Poisson system. Z. Angew. Math. Phys. 67(3), Art. 50 (2016)

  50. Wu, Z.G., Qin, Y.M.: Optimal decay rate of the bipolar Euler–Poisson system with damping in dimension three. Math. Methods Appl. Sci. 38(13), 2864–2875 (2015)

    MathSciNet  MATH  Google Scholar 

  51. Wu, Z.G., Wang, W.K.: Decay of the solution for the bipolar Euler–Poisson system with damping in dimension three. Commun. Math. Sci. 12(7), 1257–1276 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Xu, J.: Energy-transport and drift-diffusion limits of nonisentropic Euler–Poisson equations. J. Differ. Equ. 252(2), 915–940 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Xu, J., Kawashima, S.: The optimal decay estimates on the framework of Besov spaces for the Euler–Poisson two-fluid system. Math. Models Methods Appl. Sci. 25(10), 1813–1844 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Zheng, F.: Long-term regularity of the periodic Euler–Poisson system for electrons in \(2D\). Commun. Math. Phys. 366(3), 1135–1172 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Zhou, F., Li, Y.P.: Existence and some limits of stationary solutions to a one-dimensional bipolar Euler–Poisson system. J. Math. Anal. Appl. 351(1), 480–490 (2009)

    MathSciNet  MATH  Google Scholar 

  56. Zhu, C., Hattori, H.: Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species. J. Differ. Equ. 166(1), 1–32 (2000)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Leilei Tong was supported by Chongqing University of Posts and Telecommunications startup fund (Grant No. A2018-128). Zhong Tan was supported by the National Natural Science Foundation of China (Grant Nos. 11271305, 11531010). Qiuju Xu is supported by the Natural Science Foundation of Chongqing (Grant No. cstc2018jcyjAX0010) and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800532).

Appendix A. Analytic tools

Appendix A. Analytic tools

Lemma A.1

Let \(r_1>1\), \(0\le r_2\le r_1\), then it holds that

$$\begin{aligned} \int \limits _0^t(1+t-s)^{-r_1}(1+s)^{-r_2}\mathrm{d}s\le C(r_1,r_2)(1+t)^{-r_2}, \end{aligned}$$
(A.1)

where \(C(r_1,r_2)\) is defined as

$$\begin{aligned} C(r_1,r_2)=\displaystyle {\frac{2^{r_2+1}}{r_1-1}}. \end{aligned}$$

Proof

The proof can be seen in [8]. \(\square \)

Lemma A.2

Let \(l\ge 0\) be an integer, it holds

$$\begin{aligned} \left\| \nabla ^l(gh)\right\| _{L^{p_0}}\lesssim \left\| g\right\| _{L^{p_1}} \left\| \nabla ^{l}h\right\| _{L^{p_2}} +\left\| \nabla ^l g\right\| _{L^{p_3}} \left\| h\right\| _{L^{p_4}}. \end{aligned}$$
(A.2)

In the above, \(p_0,p_1,p_2,p_3,p_4\in [1,+\infty ]\) such that

$$\begin{aligned} \frac{1}{p}_0=\frac{1}{p}_1+\frac{1}{p}_2=\frac{1}{p}_3+\frac{1}{p}_4. \end{aligned}$$

Proof

The proof can be seen in [7]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, L., Tan, Z. & Xu, Q. Decay estimates of solutions to the bipolar compressible Euler–Poisson system in \(\pmb {\mathbb {R}^3}\). Z. Angew. Math. Phys. 71, 19 (2020). https://doi.org/10.1007/s00033-019-1243-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1243-7

Keywords

Mathematics Subject Classification

Navigation