Skip to main content
Log in

Global well-posedness for the 3D incompressible Keller–Segel–Navier–Stokes equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The Keller–Segel–Navier–Stokes system

$$\begin{aligned} \left\{ \begin{aligned}&\rho _{t}+u\cdot \nabla \rho =\Delta \rho -\nabla \cdot (\rho \nabla c)-\rho ^2,\\&c_{t}+u\cdot \nabla c=\Delta c -c+\rho ,\\&u_{t}+u\cdot \nabla u+\nabla P=\Delta u-\rho \nabla \phi ,\\&\nabla \cdot u=0, \end{aligned} \right. \end{aligned}$$

is considered in \(\mathbb R^3\). It is proved that under the assumptions that

$$\begin{aligned} \left( \Vert u^h_0\Vert _{B_{p,1}^{-1+\frac{3}{p}}}+\Vert \rho _0\Vert _{B_{q,1}^{-2 +\frac{3}{q}}}+\Vert c_0\Vert _{B_{q,1}^{\frac{3}{q}}}\right) \mathrm{exp}\left\{ C_0\left( 1+\Vert u^3_0\Vert _{B_{p,1}^{-1+\frac{3}{p}}}\right) ^2\right\} \le \gamma , \end{aligned}$$

we obtain the global well-posedness for the three-dimensional incompressible Keller–Segel–Navier–Stokes equations with large initial vertical velocity component by using the Fourier frequency localization and Bony paraproduct decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Kang, K., Kim, J., Lee, J.: Lower bound of mass in a chemotactic model with advection and absorbing reaction. SIAM J. Math. Anal. 49, 723–755 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  3. Bony, J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  4. Cao, X., Winkler, M.: Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proc. R. Soc. Edinb. A 148(5), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  5. Choe, H., Lkhagvasuren, B.: Global existence result for chemotaxis Navier–Stokes equations in the critical Besov spaces. J. Math. Anal. Appl. 446, 1415–1426 (2017)

    Article  MathSciNet  Google Scholar 

  6. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-attractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Article  Google Scholar 

  7. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria:Octocorallia). Mar. Biol. 123, 137–143 (1995)

    Article  Google Scholar 

  8. Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conducting gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001)

    Article  Google Scholar 

  9. Di Francesco, M., Lorz, A., Markowich, P.: Chemotaxis fluid coupled model for swimming bacteria with nonlinear diffusion: global existence and asymptotic behavior. Discrete Contin. Dyn. Syst. 28, 1437–1453 (2010)

    Article  MathSciNet  Google Scholar 

  10. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  Google Scholar 

  11. Espejo, E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier–Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    Article  MathSciNet  Google Scholar 

  12. Jin, C.: Large time periodic solutions to coupled chemotaxis-fluid models. Z. Angew. Math. Phys. 68, 137 (2017)

    Article  MathSciNet  Google Scholar 

  13. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MathSciNet  Google Scholar 

  14. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. Partial Differ. Equ. 37, 298–312 (2012)

    Article  MathSciNet  Google Scholar 

  15. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53, 115609 (2012)

    Article  MathSciNet  Google Scholar 

  16. Liu, J.G., Lorz, A.: A coupled chemotaxis-fluid model: global existence. Ann. Inst. H. Poincaré. Anal. Non linéare 28, 643–652 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lorz, A.: A coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay. Commun. Math. Sci. 10, 555–574 (2012)

    Article  MathSciNet  Google Scholar 

  18. Miao, C., Wu, J., Zhang, Z.: Littlewood-Paley Theory and Applications to Fluid Dynamics Equations, Monogr. Modern Pure Math, vol. 142. Science Press, Beijing (2012)

    Google Scholar 

  19. Miller, R.L.: Sperm chemotaxis in hydromedusae. I. Species specificity and sperm behavior. Mar. Biol. 53, 99–114 (1979)

    Article  Google Scholar 

  20. Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, Holothuroidea. Ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Article  Google Scholar 

  21. Minsuk, Y., Bataa, L., Hi, C.: Well posedness of the Keller–Segel Navier–Stokes equations in the critical Besov spaces. Commun. Pure Appl. Anal. 14, 2453–2464 (2015)

    Article  MathSciNet  Google Scholar 

  22. Osaki, K., Tsujikawa, T., Yagi, A., Mimura, M.: Exponential attractor for a chemotaxis-growth system of equations. Nonlinear Anal. 51, 119–144 (2002)

    Article  MathSciNet  Google Scholar 

  23. Paicu, M., Zhang, P.: Global solutions to the 3D incompressible inhomogeneous Navier–Stokes system. J. Funct. Anal. 262, 3556–3584 (2012)

    Article  MathSciNet  Google Scholar 

  24. Tao, Y., Winkler, M.: Global existence and boundedness in a Keller–Segel–Stokes model with arbitrary porous medium diffusion. Discrete Contin. Dyn. Syst. 32, 1901–1914 (2012)

    Article  MathSciNet  Google Scholar 

  25. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    Article  MathSciNet  Google Scholar 

  27. Tello, J.I., Winkler, M.: A chemotaxis system with logistic source. Commun. Partial Differ. Equ. 32, 849–877 (2007)

    Article  MathSciNet  Google Scholar 

  28. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  29. Winkler, M.: Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source. Commun. Partial Differ. Equ. 35, 1516–1537 (2010)

    Article  MathSciNet  Google Scholar 

  30. Winkler, M.: Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J. Math. Anal. Appl. 384, 261–272 (2011)

    Article  MathSciNet  Google Scholar 

  31. Winkler, M.: Global large-data solutions in a Chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  32. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Stabilization in a two-dimensional chemotaxis-Navier–Stokes system. Arch. Ration. Mech. Anal. 211, 455–487 (2014)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  Google Scholar 

  36. Yang, M., Fu, Z., Sun, J.: Global solutions to chemotaxis-Navier–Stokes equations in critical Besov spaces. Discrete Contin. Dyn. B 23, 3427–3460 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, Q.: Local well-posedness for the chemotaxis-Navier–Stokes equations in Besov spaces. Nonlinear Anal. Real World Appl. 17, 89–100 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q., Zheng, X.: Global well-posedness for the two-dimensional incompressible chemotaxis-Navier–Stokes equations. SIAM J. Math. Anal. 46, 3078–3105 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Q. Zhang was partially supported by the National Natural Science Foundation of China [Grant Numbers 11501160 and 11771423]; Natural Science Foundation of Hebei Province [Grant Number A2017201144]; Young Talents Foundation of Hebei Education Department [Grant Number BJ2017058]; Outstanding Youth Foundation of Hebei University [Grant Number 2015JQ01]; Research and Practice of Reform in Higher Education and Teaching Foundation of Hebei Province [Grant Number 2018GJJG012]; and the Second Batch of Young Talents of Hebei Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this “Appendix,” we will give a sketch proof of local existence and how to find the maximal time \(T_{\max }\).

Lemma 6.1

Let \((X,\Vert \cdot \Vert )\) be a Banach space, \(B:X\times X\rightarrow X\) a bilinear operator with norm K and \(L:X\rightarrow X\) a continuous operator with norm \(M<1\). Let \(y\in X\) satisfy \(4K\Vert y\Vert _X<(1-M)^2\). Then, the equation \(u=y+L(u)+B(u)\) has a unique solution in the ball \(B(0,{1-M\over 2K})\).

Proposition 6.1

Let \(u_L=\text {e}^{t\Delta }u_0\), \(\rho _L=\text {e}^{t\Delta }\rho _0\) and \(c_L=\text {e}^{t\Delta }c_0\). \((u,\ \rho ,\ c)\) is a mild solution of system (1.7) on \([0,T]\times \mathbb R^3\) with initial data \((u_0,\ \rho _0,\ c_0)\) if and only if \((u,\ \rho ,\ c,)=(u_L+{{\bar{u}}},\ \rho _L+{\bar{\rho }},\ c_L+{{\bar{c}}})\) with

$$\begin{aligned} {{\bar{u}}}= & {} -\int \limits _0^t\text {e}^{(t-s)\Delta }{{\mathcal {P}}}(u_L\cdot \nabla u_L+\rho _L\nabla \phi )(\cdot ,s)\text {d}s\\&-\int \limits _0^t\text {e}^{(t-s)\Delta }{{\mathcal {P}}}(u_L\cdot \nabla {{\bar{u}}}+\bar{u}\cdot \nabla u_L+{\bar{\rho }}_L\nabla \phi )(\cdot ,s)\text {d}s\\&-\int \limits _0^t\text {e}^{(t-s)\Delta }{{\mathcal {P}}}({{\bar{u}}}\cdot \nabla \bar{u})(\cdot ,s)\text {d}s\\= & {} y_1+L_1({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})+B_1(({\bar{\rho }},{{\bar{c}}},\bar{u}),({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})),\\ \bar{\rho }= & {} -\int \limits _0^t\text {e}^{(t-s)\Delta }(u_L\cdot \nabla \rho _L+\nabla \cdot (\rho _L\nabla c_L)+\rho _L\rho _L)(\cdot ,s)\text {d}s\\&-\int \limits _0^t\text {e}^{(t-s)\Delta }(u_L\cdot \nabla {\bar{\rho }}+{{\bar{u}}}\cdot \nabla \rho _L+\nabla \cdot (\rho _L\nabla {{\bar{c}}})+\nabla \cdot ({\bar{\rho }}\nabla c_L)+{\bar{\rho }}\rho _L+\rho _L{\bar{\rho }})(\cdot ,s)\text {d}s\\&-\int \limits _0^t\text {e}^{(t-s)\Delta }(\bar{u}\cdot \nabla {\bar{\rho }}+\nabla \cdot ({\bar{\rho }}\nabla \bar{c})+{\bar{\rho }}{\bar{\rho }})(\cdot ,s)\text {d}s\\= & {} y_2+L_2({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})+B_2(({\bar{\rho }},{{\bar{c}}},\bar{u}),({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})), \end{aligned}$$

and

$$\begin{aligned} {{\bar{c}}}= & {} -\int \limits _0^t\text {e}^{(t-s)\Delta }(u_L\cdot \nabla c_L+c_L-\rho _L)(\cdot ,s)\text {d}s -\int \limits _0^t\text {e}^{(t-s)\Delta }(u_L\cdot \nabla {{\bar{c}}}+{{\bar{u}}}\cdot \nabla c_L)(\cdot ,s)\text {d}s\\&-\int \limits _0^t\text {e}^{(t-s)\Delta }({{\bar{u}}}\cdot \nabla {{\bar{c}}}+\bar{c}-{\bar{\rho }})(\cdot ,s)\text {d}s =y_3+L_3({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})+B_3(({\bar{\rho }},{{\bar{c}}},\bar{u}),({\bar{\rho }},{{\bar{c}}},{{\bar{u}}})) \end{aligned}$$

with

$$\begin{aligned} ({{\bar{u}}},{\bar{\rho }},{{\bar{c}}})|_{t=0}=(0,0,0). \end{aligned}$$

Proof

We skip the proof because it is easy. \(\square \)

The proof of local existence is standard, and one can refer to [36]. For convenience to readers, we give a sketch. Applying Lemma 2.2 , we notice

$$\begin{aligned}&\Vert u_L\Vert _{{{\widetilde{L}}}^\infty ([0,T];B_{p,1}^{-1+{3\over p}})}\le C\Vert u_0\Vert _{B_{p,1}^{-1+{3\over p}}},\\&\Vert \rho _L\Vert _{{{\widetilde{L}}}^\infty ([0,T];B_{q,1}^{-2+{3\over q}})}\le C\Vert \rho _0\Vert _{B_{q,1}^{-2+{3\over q}}},\\&\Vert c_L\Vert _{{{\widetilde{L}}}^\infty ([0,T];B_{q,1}^{{3\over q}})}\le C\Vert c_0\Vert _{B_{q,1}^{{3\over q}}}, \end{aligned}$$

and

$$\begin{aligned}&\lim _{T\rightarrow 0}\Vert u_L\Vert _{L^1 ([0,T];B_{p,1}^{1+{3\over p}})}=0,\\&\lim _{T\rightarrow 0}\Vert \rho _L\Vert _{L^1 ([0,T];B_{q,1}^{3\over q})}=0,\\&\lim _{T\rightarrow 0}\Vert c_L\Vert _{L^1 ([0,T];B_{q,1}^{2+{3\over q}})}=0.\\ \end{aligned}$$

Let

$$\begin{aligned}&T_1=\sup \{T>0:\Vert u_L\Vert _{L^1 ([0,T];B_{p,1}^{1+{3\over p}})}\le \eta \},\\&T_2=\sup \{T>0:\Vert \rho _L\Vert _{L^1 ([0,T];B_{q,1}^{3\over q})}\le \eta \},\\&T_3=\sup \{T>0:\Vert c_L\Vert _{L^1 ([0,T];B_{q,1}^{2+{3\over q}})}\le \eta \}. \end{aligned}$$

Choose \({{\mathcal {T}}}=\min \{T_1,T_2,T_3\}\) and take \(T\le {\mathcal T}\) and \(\eta \) small enough. Set

$$\begin{aligned} {{\mathcal {F}}}_T=L^1 ([0,T];B_{p,1}^{-1+{3\over p}})\times L^1 ([0,T];B_{q,1}^{-2+{3\over q}})\times L^1 ([0,T];B_{q,1}^{{3\over q}}). \end{aligned}$$

By Lemma 4.14.3, there exists a constant \(K>0\) such that

$$\begin{aligned} \Vert B\Vert _{\Theta _T}= & {} \Vert (B_1,B_2,B_3)(({{\bar{u}}},{\bar{\rho }},{{\bar{c}}}),(\bar{u},{\bar{\rho }},{{\bar{c}}}))\Vert _{\Theta _T}\\\le & {} C\Vert {{\bar{u}}}\cdot \nabla {{\bar{u}}}+\bar{u}\cdot \nabla {\bar{\rho }}+\nabla \cdot ({\bar{\rho }}\nabla {{\bar{c}}})+{\bar{\rho }}{\bar{\rho }}+\bar{u}\cdot \nabla {{\bar{c}}}+{{\bar{c}}}-{\bar{\rho }}\Vert _{{{\mathcal {F}}}_T}\\\le & {} K\Vert ({{\bar{u}}},{\bar{\rho }},{{\bar{c}}})\Vert ^2_{\Theta _T}. \end{aligned}$$

On the other hand, we have

$$\begin{aligned}&\Vert L\Vert _{\Theta _T}=\Vert (L_1,L_2,L_3)({{\bar{u}}},{\bar{\rho }},\bar{c}\Vert _{\Theta _T}\\&\quad \le C\Vert u_L\cdot \nabla {{\bar{u}}}+{{\bar{u}}}\cdot \nabla u_L+{\bar{\rho }}_L\nabla \phi +u_L\cdot \nabla {\bar{\rho }}+{{\bar{u}}}\cdot \nabla \rho _L+\nabla \cdot (\rho _L\nabla {{\bar{c}}})\\&\qquad +\,\nabla \cdot ({\bar{\rho }}\nabla c_L)+{\bar{\rho }}\rho _L+\rho _L{\bar{\rho }}+u_L\cdot \nabla {{\bar{c}}}+{{\bar{u}}}\cdot \nabla c_L\Vert _{{{\mathcal {F}}}_T}\\&\quad \le M\Vert ({{\bar{u}}},{\bar{\rho }},{{\bar{c}}}\Vert _{\Theta _T}, \end{aligned}$$

where we can choose \(M<1\) if \(\eta \) is sufficiently small.

According to estimates for heat equation (see [18]), for \(E_0=B_{p,1}^{-1+{3\over p}}\times B_{q,1}^{-2+{3\over q}}\times B_{q,1}^{{3\over q}}\), we obtain

$$\begin{aligned} \Vert y\Vert _{\Theta _T}= & {} \Vert (y_1,y_2,y_3)\Vert _{\Theta _T}\\\le & {} C\Vert u_L\cdot \nabla u_L+\rho _L\nabla \phi +u_L\cdot \nabla \rho _L+\nabla \cdot (\rho _L\nabla c_L)+\rho _L\rho _L+u_L\cdot \nabla c_L+c_L-\rho _L\Vert _{{{\mathcal {F}}}_T}\\\le & {} C\eta \Vert (u_0,\rho _0,c_0\Vert _{E_0}. \end{aligned}$$

We can take \(\eta \) and T small enough such that \(C\eta \Vert (u_0,\rho _0,c_0)\Vert _{E_0}\le {(1-M)^2\over 4K}\). By Lemma 6.1 and Proposition 6.1, we have a unique local solution of (1.7).

Next, we prove the solution can be extended from \(I=[0,T]\) to \(I_1=[T,T_1]\) for some \(T_1>T\). Consider the following equalities:

$$\begin{aligned}&u(t)=\text {e}^{(t-T)\Delta }u(T)-\int \limits _T^t\text {e}^{(t-s)}{{\mathcal {P}}}(u\cdot \nabla u+\rho \nabla \phi )(\cdot ,s)\text {d}s,\\&\rho (t)=\text {e}^{(t-T)\Delta }\rho (T)-\int \limits _T^t\text {e}^{(t-s)}(u\cdot \nabla \rho +\nabla \cdot (\rho \nabla c)+\rho ^2)(\cdot ,s)\text {d}s,\\&c(t)=\text {e}^{(t-T)\Delta }c(T)-\int \limits _T^t\text {e}^{(t-s)}(u\cdot \nabla c+c-\rho )(\cdot ,s)\text {d}s. \end{aligned}$$

By the same line in proving the local existence above, together with the Banach’s fixed point Lemma 6.1, we obtain the local solution on \([T,T_1]\). Then, we can find a maximal \(T_{\max }>0\) step by step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Zhang, Y. Global well-posedness for the 3D incompressible Keller–Segel–Navier–Stokes equations. Z. Angew. Math. Phys. 70, 140 (2019). https://doi.org/10.1007/s00033-019-1185-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1185-0

Mathematics Subject Classification

Keywords

Navigation