Skip to main content
Log in

Existence and Concentration of Solutions for a Class of Elliptic Kirchhoff–Schrödinger Equations with Subcritical and Critical Growth

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

This study focuses on the existence and concentration of ground state solutions for a class of fractional Kirchhoff–Schrödinger equations. We first study the problem

$$\left\{ \begin{array}{ll} M ([u]^{2}_{s} + \int_{\mathbb{R}^{N}} V(x)u^{2}) ((-{\Delta})^{s}u + V (x)u) = \bar{c}u + f(u)\, {\rm in}\,\, \mathbb{R}^N,\\ u > 0, u\, {\in} \, {H}^{s} (\mathbb{R}^N),\end{array} \right.$$

where \(s \in (0,1), N > 2s, [\cdot]_s\) is the Gagliardo semi-norm, \(\bar{c}\) is a suitable constant,M is a non-degenerate continuous Kirchhoff function that behaves like \(t^{\alpha}, V(x) = {\lambda}a(x) + 1, {\rm with}\,\, a(x) \geq 0\) and a is identically zero on the bounded set \({\Omega}_{\Upsilon}\) , and f denotes a continuous nonlinearity with subcritical growth at infinity. The proof relies on penalization arguments and variational methods to obtain the existence of a solution with minimal energy for a large value of \(\lambda\). Moreover, assuming that \(M(t) = m_{0} + b_{0}t^{\alpha}\) and utilizing the same techniques combined with a concentration-compactness lemma, we can establish the existence and concentration of solutions for the problem

$$\left\{\begin{array}{ll} M ([u]^2_s+\int_{\mathbb{R}^N}V(x)u^2) ((-\Delta)^s u + V(x)u)= h(x)u + u^{2^*_s -1} \ {\rm in} \ \mathbb{R}^N,\\ u>0, \quad u\in H^s (\mathbb{R}^N), \end{array}\right.$$

if the value of \(\lambda\) is large enough and b0 is small or m0 is large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Figueiredo, G.M.: Multi-bump solutions for a Kirchhoff-type problem. Adv. Nonlinear Anal. 5(1), 1–26 (2016)

    Article  MathSciNet  Google Scholar 

  2. C.O. Alves, and O.H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in \(\mathbb{R}^N\) via penalization method, Calc. Var. Partial Differential Equations 55 (2016), no. 3, paper no. 47, 19 pp

  3. V. Ambrosio, Ground states solutions for a non-linear equation involving a pseudorelativistic Schrödinger operator, J. Math. Phys. 57 (2016), no. 5, 051502, 18 pp

  4. V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura Appl. (4) 196 (2017), no. 6, 2043– 2062

  5. Ambrosio, V.: Concentrating solutions for a class of nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). Rev. Mat. Iberoam. 35(5), 1367–1414 (2019)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, V., Isernia, T.: Concentration phenomena for a fractional Schrödinger- Kirchhoff type equation. Math. Methods Appl. Sci. 41(2), 615–645 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Ambrosio, V., Figueiredo, G.M.: Ground state solutions for a fractional Schrödinger equation with critical growth. Asymptotic Analysis 105(3–4), 159–191 (2017)

    Article  MathSciNet  Google Scholar 

  8. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differential Equations 255(8), 2340–2362 (2013)

    Article  MathSciNet  Google Scholar 

  9. D. Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge Univ. Press, Cambridge, 2009

  10. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \(\mathbb{R}^N\). Comm. Part. Diff. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  11. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  12. Bertoin, J.: Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  13. Bisci, G.M., Radulescu, V.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differential Equations 54(3), 2985–3008 (2015)

    Article  MathSciNet  Google Scholar 

  14. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  15. Barrios, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave-convex nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 875–900 (2015)

    Article  MathSciNet  Google Scholar 

  16. Bogachev, V.I.: Measure Theory, vol. II. Springer-Verlag, Berlin (2007)

    Book  Google Scholar 

  17. Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman and Hall, CRC Financial Mathematics Series, FL (2004)

    MATH  Google Scholar 

  18. J.N. Correia and G.M. Figueiredo, Existence of positive solution of the equation \((-{\Delta})^{s}u + a(x)u = |u|^{2^{*}_{s}-2}u\), Calc. Var. Partial Differential Equations 58 (2019), paper no. 63

  19. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differential Equations 256(2), 858–892 (2014)

    Article  MathSciNet  Google Scholar 

  20. Dávila, J., del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8(5), 1165–1235 (2015)

    Article  MathSciNet  Google Scholar 

  21. del Pino, M., Felmer, P.L.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differential Equations 4, 121–137 (1996)

    Article  MathSciNet  Google Scholar 

  22. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker's guide to the fractional Sobolev spaces. B. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  23. S. Dipierro, M. Medina, and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of \(\mathbb{R}^N\), Lecture Notes Scuola Normale Superiore di Pisa (New Series), vol. 15, Edizioni della Normale, Pisa, 2017.

  24. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proccedings of the Royal Society of Edinburgh 142A, 1237–1262 (2012)

    Article  Google Scholar 

  25. Figueiredo, G.M.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl. 401, 706–713 (2013)

    Article  MathSciNet  Google Scholar 

  26. Fiscella, A.: Infinitely many solutions for a critical Kirchhoff type problem involving a fractional operator. Differential Integral Equations 29(5–6), 513–530 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  Google Scholar 

  28. R. Frank, E, Lenzmann, and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016), no. 9, 1671–1726

  29. He, X., Zou, W.: Ground states for nonlinear Kirchhoff equations with critical growth. Annali di Matematica 193, 473–500 (2014)

    Article  MathSciNet  Google Scholar 

  30. N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A 268 (2000), 298; Fractional quantum mechanics, Phys. Rev. E 62 (2000), 3135.

  31. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  32. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  33. X. Mingqi, P. Pucci, M. Squassina, and B.L. Zhang, Nonlocal Schrödinger–Kirchhoff equations with external magnetic field, Discrete Contin. Dyn. Syst. 37 (2017), 503-.521

  34. Mingqi, X., Zhang, B., Repovs, D.: Existence and multiplicity of solutions for fractional Schrödinger-Kirchhoff equations with Trudinger-Moser nonlinearity. Nonlinear Anal. 186, 74–98 (2019)

    Article  MathSciNet  Google Scholar 

  35. Miyagaki, O.H.: On a class of semilinear elliptic problem in \(\mathbb{R}^N\) with critical growth. Nonlinear Anal. 29, 773–781 (1997)

    Article  MathSciNet  Google Scholar 

  36. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differential Equations 50, 799–829 (2014)

    Article  MathSciNet  Google Scholar 

  37. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  Google Scholar 

  38. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367(1), 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  39. R. Servadei and Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal. 12 (2013), no. 6, 2445–2464

  40. Teng, K.: Ground state solutions for the non-linear fractional Schrödinger-Poisson system. Applicable Analysis 98(11), 1959–1996 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bráulio B. V. Maia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors would like to thank the anonymous reviewer for his/her comments. Bráulio B. V. Maia was partially supported by CAPES/Brasil. Olímpio H. Miyagaki was partially supported by CNPq/Brasil and FAPESP/SP/Brasil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A.C.R., Maia, B.B.V. & Miyagaki, O.H. Existence and Concentration of Solutions for a Class of Elliptic Kirchhoff–Schrödinger Equations with Subcritical and Critical Growth. Milan J. Math. 88, 385–407 (2020). https://doi.org/10.1007/s00032-020-00317-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-020-00317-4

Mathematics Subject Classification (2010)

Keywords

Navigation