Skip to main content
Log in

Ground state solutions of scalar field fractional Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of multiple ground state solutions for a class of parametric fractional Schrödinger equations whose simplest prototype is

$$\begin{aligned} (-\Delta )^{s}u+V(x)u=\lambda f(x,u) \quad \hbox { in }\mathbb {R}^{n}, \end{aligned}$$

where \(n>2, (-\Delta )^{s}\) stands for the fractional Laplace operator of order \(s\in (0,1)\), and \(\lambda \) is a positive real parameter. The nonlinear term f is assumed to have a superlinear behaviour at the origin and a sublinear decay at infinity. By using variational methods, we establish the existence of a suitable range of positive eigenvalues for which the problem admits at least two nontrivial solutions in a suitable weighted fractional Sobolev space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Bouchitté, G., Seppecher, P.: Phase transition with the line-tension effect. Arch. Ration. Mech. Anal. 144, 1–46 (1998)

    Article  MATH  Google Scholar 

  2. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differ Equ 255, 2340–2362 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barrios, B., Colorado, E., De Pablo, A., Sanchez, U.: On some critical problems for the fractional Laplacian operator. J. Differ Equ 252, 6133–6162 (2012)

    Article  MATH  Google Scholar 

  4. Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems in \(\mathbb{R}^N,\) Comm. Partial Differ Equ 20, 1725–1741 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 4, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Comm. Partial Differ Equ 29, 25–42 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bertoin, J.: Processes, cambridge tracts in math, vol. 121. Cambridge Univ. Press, Cambridge (1996)

    Google Scholar 

  8. Brézis, H.: Analyse fonctionelle. Théorie et Applications, Masson (1983)

    Google Scholar 

  9. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caffarelli, L., Roquejoffre, J.-M., Sire, Y.: Variational problems for free boundaries for the fractional Laplacian. J. Eur. Math. Soc. JEMS 12, 1151–1179 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ Equ 32, 1245–1260 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62, 597–638 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caffarelli, L., Silvestre, L.: Regularity results for nonlocal equations by approximation. Arch. Ration. Mech. Anal. 200, 59–88 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Capella, A.: Solutions of a pure critical exponent problem involving the half-Laplacian in annular-shaped domains. Comm. Pure Appl. Anal. 10, 1645–1662 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cont, R., Tankov, P.: Financial modelling with jump processes. Chapman & Hall/CRC Financ. Math. Ser., Chapman & Hall/CRC, Boca Raton (2004)

  17. Coti Zelati, V., Nolasco, M.: Existence of ground states for nonlinear, pseudo-relativistic Schrödinger equations. Atti Accad. Naz. Lincei Cl. Sci. Fis., Mat. Nat. Rend. Lincei Mat. Appl 22, 51–72 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54, 061504 (2013)

    Article  MathSciNet  Google Scholar 

  19. Cheng, X.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ciarlet, P.G.: Linear and nonlinear functional analysis with applications. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2013)

    MATH  Google Scholar 

  21. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger-type problem involving the fractional Laplacian. Le Matematiche 68, 201–216 (2013)

    MATH  MathSciNet  Google Scholar 

  22. Dipierro, S., Pinamonti, A.: A geometric inequality and a symmetry result for elliptic systems involving the fractional Laplacian. J. Differ Equ 255, 85–119 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2012)

  25. Furtado, M.F., Maia, L.A., Silva, E.A.B.: On a double resonant problem in \(\mathbb{R}^N\). Differ Integral Equ 15, 1335–1344 (2002)

    MATH  MathSciNet  Google Scholar 

  26. Frank, R.L., Lenzmann, E.: Uniqueness and nondegeneracy of ground states for \((-\Delta )^{s}Q+Q-Q^{\alpha +1}=0\), to appear in Annals of Mathematics

  27. Gazzola, F., Rădulescu, V.: A nonsmooth critical point theory approach to some nonlinear elliptic equations in \(\mathbb{R}^N\). Differ Integral Equ 13, 47–60 (2000)

    MATH  Google Scholar 

  28. Ghergu, M., Rădulescu, V.: Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics, Springer Verlag, Heidelberg (2012)

  29. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal equations with measure data. Comm. Math. Phys. 337, 1317–1368 (2015)

    Article  MathSciNet  Google Scholar 

  30. Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)

    Article  MathSciNet  Google Scholar 

  31. Kristály, A.: A double eigenvalue problem for Schrödinger equations involving sublinear nonlinearities at infinity. Electron. J. Differ Equ 42, 1–11 (2007)

    Google Scholar 

  32. Kurihura, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Japan 50, 3262–3267 (1981)

    Article  Google Scholar 

  33. Landkof, N.S.: Osnovy sovremennoi teorii potentsiala. Nauka, Moscow (1966)

    Google Scholar 

  34. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  35. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  36. Molica Bisci, G.: Fractional equations with bounded primitive. Appl. Math. Lett. 27, 53–58 (2014)

    Article  MathSciNet  Google Scholar 

  37. Molica Bisci, G.: Sequences of weak solutions for fractional equations. Math. Res. Lett. 21, 1–13 (2014)

    Article  MathSciNet  Google Scholar 

  38. Molica Bisci, G., Pansera, B.A.: Three weak solutions for nonlocal fractional equations. Adv Nonlinear Stud. 14, 591–601 (2014)

    MathSciNet  Google Scholar 

  39. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational methods for nonlocal fractional problems. Cambridge University Press, Cambridge (2015)

    Google Scholar 

  40. Molica Bisci, G., Servadei, R.: A bifurcation result for nonlocal fractional equations. Anal. Appl. 13, 371–394 (2015)

    Article  MathSciNet  Google Scholar 

  41. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \(\mathbb{R}^n\) involving nonlocal operators. Rev. Mat. Iberoam

  42. Pucci, P., Zhang, Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ Equ 257, 1529–1566 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  44. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. CBMS Reg. Conf. Ser. Math., Amer. Math. Soc. Providence (1986)

  45. Ricceri, B.: On a three critical points theorem. Archiv der Mathematik Basel 75, 220–226 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  46. Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problems. Math Comput Modell 32, 1485–1494 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ricceri, B.: A further three critical points theorem. Nonlinear Anal. 71, 4151–4157 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Secchi, S.: Ground state solutions for nonlinear fractional Schröinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  Google Scholar 

  49. Secchi, S.: Perturbation results for some nonlinear equations involving fractional operators. Differ. Equ. Appl. 5, 221–236 (2013)

    MATH  MathSciNet  Google Scholar 

  50. Secchi, S.: On fractional Schrödinger equations in \(\mathbb{R}^N\) without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. (in press)

  51. Servadei, R., Valdinoci, E.: Mountain pass solutions for non-local elliptic operators. J. Math. Anal. Appl. 389, 887–898 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  52. Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discrete Contin. Dyn. Syst. 33, 2105–2137 (2013)

    MATH  MathSciNet  Google Scholar 

  53. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator, Ph.D. Thesis, The University of Texas at Austin, p. 95, ISBN: 978-0542-25310-2 (2005)

  54. Silvestre, L.: On the differentiability of the solution to the Hamilton-Jacobi equation with critical fractional diffusion. Adv. Math. 226, 2020–2039 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  55. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  56. Teng, K.: Multiple solutions for a class of fractional Schrödinger equations in \(\mathbb{R}^N\). Nonlinear Anal Real World Appl 21, 76–86 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  57. Tan, J.: The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ Equ 36, 21–41 (2011)

    Article  Google Scholar 

  58. Willem, M.: Minimax theorems. Birkhäuser, Boston (1995)

    Google Scholar 

Download references

Acknowledgments

The manuscript was realized within the auspices of the INdAM–GNAMPA Project 2015 titled Modelli ed equazioni non-locali di tipo frazionario. V. Rădulescu acknowledges the support through Grant CNCS PCE-47/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Molica Bisci.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisci, G.M., Rădulescu, V.D. Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. 54, 2985–3008 (2015). https://doi.org/10.1007/s00526-015-0891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-015-0891-5

Mathematics Subject Classification

Navigation