Skip to main content
Log in

q-Laplace equation involving the gradient on general bounded and exterior domains

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

The existence of positive singular solutions of

$$\begin{aligned} \left\{ \begin{array}{lcc} -\Delta _q u=(1+g(x))|\nabla u|^p &{}\quad \text {in}&{} B_1,\\ u=0&{}\quad \text {on}&{} \partial B_1, \end{array} \right. \end{aligned}$$
(1)

is proved, where \(B_1\) is the unit ball in \({\mathbb {R}}^N\), \(N \ge 3\), \(2<q<N\), \(\frac{N(q-1)}{N-1}<p<q\) and \(g\ge 0\) is a Hölder continuous function with \(g(0) = 0\). Also, the existence of positive singular solutions of

$$\begin{aligned} \left\{ \begin{array}{lcc} -\Delta _q u=|\nabla u|^p &{}\quad \text {in}&{} \Omega ,\\ u=0&{}\quad \text {on}&{} \partial \Omega . \end{array} \right. \end{aligned}$$
(2)

is proved, where \(\Omega \) is a bounded smooth domain in \({\mathbb {R}}^N\), \(N \ge 3\), \(2< q<N\) and \(\frac{N(q-1)}{N-1}<p<q\). Finally, the existence of a bounded positive classical solution of (2) with the additional property that \(\nabla u(x) \cdot x > 0\) for large |x| is proved, in the case of \(\Omega \) an exterior domain \({\mathbb {R}}^N\), \(N\ge 3\) and \(p >\frac{N(q-1)}{N-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. Abdel Hamid, H., Bidaut-Véron, M.-F.: On the connection between two quasilinear elliptic problems with source terms of order 0 or 1. Commun. Contemp. Math. 12(05), 727–788 (2010)

    MathSciNet  Google Scholar 

  2. Abdellaoui, B., Dall’Aglio, A., Peral, I.: Some remarks on elliptic problems with critical growth in the gradient. J. Differ. Equ. 222, 21–26 (2006)

    MathSciNet  Google Scholar 

  3. Aghajani, A., Cowan, C.: Singular solutions of elliptic equations on a perturbed cone. J. Differ. Equ. 266(6), 3328–3366 (2019)

    MathSciNet  Google Scholar 

  4. Aghajani, A., Cowan, C.: Some elliptic problems involving the gradient on general bounded and exterior domains. Calc. Var. Partial Differ. Equ. 60(5), 1–23 (2021)

    MathSciNet  Google Scholar 

  5. Aghajani, A., Cowan, C., Lui, S.H.: Existence and regularity of nonlinear advection problems. Nonlinear Anal. 166, 19–47 (2018)

    MathSciNet  Google Scholar 

  6. Aghajani, A., Cowan, C., Lui, S.H.: Singular solutions of elliptic equations involving nonlinear gradient terms on perturbations of the ball. J. Differ. Equ. 264, 2865–2896 (2018)

    MathSciNet  Google Scholar 

  7. Aghajani, A., Cowan, C., Lui, S.H.: A nonlinear elliptic problem involving the gradient on a half space. Discrete Contin. Dyn. Syst. 43(1), 378–391 (2023)

    MathSciNet  Google Scholar 

  8. Arcoya, D., Boccardo, L., Leonori, T., Porretta, A.: Some elliptic problems with singular natural growth lower order terms. J. Differ. Equ. 249, 2771–2795 (2010)

    MathSciNet  Google Scholar 

  9. Arcoya, D., Carmona, J., Leonori, T., Martinez-Aparicio, P.J., Orsina, L., Petitta, F.: Existence and non-existence of solutions for singular quadratic quasilinear equations. J. Differ. Equ. 246, 4006–4042 (2009)

    Google Scholar 

  10. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions. J. Math. Anal. Appl. 420, 772–780 (2014)

    MathSciNet  Google Scholar 

  11. Arcoya, D., De Coster, C., Jeanjean, L., Tanaka, K.: Continuum of solutions for an elliptic problem with critical growth in the gradient. J. Funct. Anal. 268, 2298–2335 (2015)

    MathSciNet  Google Scholar 

  12. Bensoussan, A., Boccardo, L., Murat, F.: On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. Henri Poincare 5, 347–364 (1988)

    MathSciNet  Google Scholar 

  13. Bidaut-Véron, M.-F., Garcia-Huidobro, M., Véron, L.: Remarks on some quasilinear equations with gradient terms and measure data, Recent trends in nonlinear partial differential equations. II. Stationary problems (2013). hal-00758065v2

  14. Bidaut-Véron, M.-F., Garcia-Huidobro, M., Véron, L.: Local and global properties of solutions of quasilinear Hamilton–Jacobi equations. J. Funct. Anal. 267, 3294–3331 (2014)

    MathSciNet  Google Scholar 

  15. Bidaut-Véron, M.-F., Garcia-Huidobro, M., Véron, L.: Boundary singularities of positive solutions of quasilinear Hamilton–Jacobi equations. Calc. Var. Partial Differ. Equ. 54, 3471–3515 (2015)

    MathSciNet  Google Scholar 

  16. Boccardo, L., Gallouet, T.: Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169 (1989)

    MathSciNet  Google Scholar 

  17. Boccardo, L., Gallouet, T.: Nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17(3–4), 641–655 (1992)

    MathSciNet  Google Scholar 

  18. Ching, J., Cirstea, F.C.: Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term. Anal. PDE 8, 1931–1962 (2015)

    MathSciNet  Google Scholar 

  19. Cowan, C.: Supercritical elliptic problems involving a Cordes like operator. Discrete Contin. Dyn. Syst. 41(9), 4297–4318 (2021)

    MathSciNet  Google Scholar 

  20. Cowan, C., Razani, A.: Singular solutions of a \(p\)-Laplace equation involving the gradient. J. Differ. Equ. 269(4), 3914–3942 (2020)

    MathSciNet  Google Scholar 

  21. Cowan, C., Razani, A.: Singular solutions of a Lane-Emden system. Discrete Contin. Dyn. Syst. 41(2), 621–656 (2021)

    MathSciNet  Google Scholar 

  22. Cowan, C., Razani, A.: Singular solutions of a Hénon equation involving a nonlinear gradient term. Commun. Pure Appl. Math. 21(1), 141–158 (2022)

    Google Scholar 

  23. Dávila, J., del Pino, M., Musso, M.: The supercritical Lane–Emden–Fowler equation in exterior domains. Commun. Partial Differ. Equ. 32(8), 1225–1243 (2007)

    MathSciNet  Google Scholar 

  24. Ferone, V., Murat, F.: Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small. Nonlinear Anal. 42, 13309–1326 (2000)

    MathSciNet  Google Scholar 

  25. Figueiredo, G.M., Razani, A.: The sub-supersolution method for a non-homogeneous elliptic equation involving Lebesgue generalized spaces. Bound. Value Probl. 2021, 105 (2021)

    Google Scholar 

  26. Gherga, M., Rădulescu, V.: Nonlinear PDEs. Springer, Berlin (2012)

    Google Scholar 

  27. Giachetti, D., Petitta, F., Segura de Leon, S.: A priori estimates for elliptic problems with a strongly singular gradient term and a general datum. Differ. Integral Eqns. 226, 913–948 (2013)

    MathSciNet  Google Scholar 

  28. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin (2001)

    Google Scholar 

  29. Grenon, N., Murat, F., Porretta, A.: A priori estimates and existence for elliptic equations with gradient dependent terms. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13(5), 137–205 (2014)

    MathSciNet  Google Scholar 

  30. Grenon, N., Murat, F., Porretta, A.: Existence and a priori estimate for elliptic problems with subquadratic gradient dependent terms. C. R. Acad. Sci. Paris Ser. I 342, 23–28 (2006)

    MathSciNet  Google Scholar 

  31. Grenon, N., Trombetti, C.: Existence results for a class of nonlinear elliptic problems with \(p\)-growth in the gradient. Nonlinear Anal. 52, 931–942 (2003)

    MathSciNet  Google Scholar 

  32. Lasry, J.M., Lions, P.L.: Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. Math. Ann. 283, 583–630 (1989)

    MathSciNet  Google Scholar 

  33. Lindqvist, P.: Notes on the \(p\)-Laplace equation, University of Jyväaskylä, Report 102 (2006)

  34. Lions, P.L.: Quelques remarques sur les problemes elliptiques quasilineaires du second ordre. J. Anal. Math. 45, 234–254 (1985)

    MathSciNet  Google Scholar 

  35. Marcus, M., Nguyen, P.T.: Elliptic equations with nonlinear absorption depending on the solution and its gradient. Proc. Lond. Math. Soc. 111, 205–239 (2015)

    MathSciNet  Google Scholar 

  36. Metafune, G., Sobajima, M., Spina, C.: Elliptic and parabolic problems for a class of operators with discontinuous coefficients. Ann. Sc. Norm. Super. Pisa Cl. Sci. 19(2), 601–654 (2019)

    MathSciNet  Google Scholar 

  37. Nguyen, P.T.: Isolated singularities of positive solutions of elliptic equations with weighted gradient term. Anal. PDE 9(7), 1671–1692 (2016)

    MathSciNet  Google Scholar 

  38. Nguyen, P.T., Veron, L.: Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations. J. Funct. Anal. 263, 1487–1538 (2012)

    MathSciNet  Google Scholar 

  39. Porretta, A., Segura de Leon, S.: Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85, 465–492 (2006)

    MathSciNet  Google Scholar 

  40. Razani, A., Figueiredo, G.M.: Weak solution by sub-super solution method for a nonlocal elliptic system involving Lebesgue generalized spaces. Electron. J. Differ. Equ. 2022(36), 1–18 (2022)

    Google Scholar 

  41. Razani, A., Figueiredo, G.M.: Existence of infinitely many solutions for an anisotropic equation using genus theory. Math. Methods Appl. Sci. 45(12), 7591–7606 (2022)

    MathSciNet  Google Scholar 

  42. Struwe, M.: Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Springer, Berlin (1990)

    Google Scholar 

  43. Zhang, Z.: Boundary blow-up elliptic problems with nonlinear gradient terms. J. Differ. Equ. 228, 661–684 (2006)

    MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and reviewed the manuscript.

Corresponding author

Correspondence to A. Razani.

Ethics declarations

Ethical Approval

Not applicable.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we have some of the computations.

Notice that \(\alpha :=\frac{(N-1)(p-q+1)}{q-1},\ \beta :=\frac{p-q+1}{(q-1)(\alpha -1)},\ \varsigma =q-2\), thus

$$\begin{aligned} \begin{aligned} (q-1)(\alpha -1)=&(N-1)(p-q+1)-(q-1),\\ \\ N-2-\varsigma -\frac{p-q+2}{\beta }=&(N-1)-(q-1)-(p-q+2)\\ {}&\frac{(N-1)(p-q+1)-(q-1)}{p-q+1}\\ =&\left( 1-\left( p-q+2\right) \right) \left( N-1\right) -\left( q-1\right) \left( 1-\frac{p-q+2}{p-q+1}\right) \\ =&(q-1)(\frac{1}{p-q+1})-\left( p-q+1\right) \left( N-1\right) \end{aligned} \end{aligned}$$
(61)

Let \(u_t\) is given by Example 1 then

$$\begin{aligned} \begin{aligned} {(u_t)}_r=\frac{-1}{(\beta r+tr^\alpha )^{\frac{1}{p-q+1}}},\ {(u_t)}_{rr}=\frac{1}{p-q+1}\frac{(\beta +t\alpha r^{\alpha -1})}{(\beta r+tr^\alpha )^{\frac{1}{p-q+1}+1}} \end{aligned} \end{aligned}$$

Also

$$\begin{aligned} \begin{aligned} (I)&\,\frac{(q-2)}{2} \nabla \phi \cdot \nabla | \nabla u_t|^2=(q-2){(u_t)}_{rr}{(u_t)}_r\,\frac{x\cdot \nabla \phi }{r},\\ {}&\\ (II)&\,\nabla u_t \cdot \nabla (\nabla u_t \cdot \nabla \phi )={(u_t)}_r^2\phi _{rr}+{(u_t)}_{rr}{(u_t)}_r\,\frac{x\cdot \nabla \phi }{r},\\ {}&\\ (III)&\,(\Delta u_t) (2 \nabla u_t \cdot \nabla \phi )=2{(u_t)}_{rr}{(u_t)}_r\,\frac{x\cdot \nabla \phi }{r}+2\frac{N-1}{r}{(u_t)}_r^2\,\frac{x\cdot \nabla \phi }{r}\\ {}&\\ (IV)&\,(p-q+4) | \nabla u_t|^{p-q+2} \nabla u_t \cdot \nabla \phi =(p-q+4){(u_t)}_r^{p-q+2}{(u_t)}_r\,\frac{x\cdot \nabla \phi }{r}. \end{aligned} \end{aligned}$$
(62)

The following lemma includes some fairly standard inequalities that are needed to prove the nonlinear mapping is a contraction. Note there are no smallness assumptions on the y and z terms. See, for instance, [3, 20, 21, 33] for a proof.

Lemma 8

Suppose \(p>1\). There exists a constant C such that the following hold:

  1. (1)

    For all numbers \(w>0\) and \( \phi , {\tilde{\phi }} \in {\mathbb {R}}\),

    $$\begin{aligned} \left| |w+\phi |^p-pw^{p-1}\phi -w^p\right| \le C\left( w^{p-2}\phi ^2+|\phi |^p\right) , \end{aligned}$$

    and

    $$\begin{aligned}{} & {} \left| |w+{\tilde{\phi }}|^p-|w+\phi |^p-pw^{p-1}({\tilde{\phi }}-\phi )\right| \\{} & {} \le C\left( w^{p-2}\left( |\phi |+|{\tilde{\phi }}|\right) +|\phi |^{p-1}+|{\tilde{\phi }}|^{p-1}\right) \left| {\tilde{\phi }}-\phi \right| . \end{aligned}$$
  2. (2)

    For all \(x,y,z\in {\mathbb {R}}^N\),

    $$\begin{aligned} \left| |x+y|^p-|x+z|^p\right| \le C\left( |x|^{p-1}+|y|^{p-1}+|z|^{p-1}\right) |y-z|. \end{aligned}$$
  3. (3)

    For \(p>1\), there exists \(C_p\) such that for and \(x,y\in {\mathbb {R}}^N\) and (\(x \ne 0\)) and |y| small enough

    $$\begin{aligned} | |x+y|^p-|x|^p-p|x|^{p-2}x \cdot y|\le C_p\left( |y|^p+|x|^{p-2}|y|^2\right) . \end{aligned}$$
  4. (4)

    For \(x,y, z\in {\mathbb {R}}^N\),

    $$\begin{aligned}{} & {} \left| |x+y|^p-|x+z|^p-p|x|^{p-2}x\cdot (y-z)\right| \\{} & {} \quad \le C\left( |x|^{p-2}\left( |y|+|z|\right) +|y|^{p-1}+|z|^{p-1}\right) \left| y-z\right| . \end{aligned}$$

Here we recall the following lemma from [4, Lemam 4].

Lemma 9

Suppose \(1 < p\le 2\). Then there is some \(C = C_p\) such that for all \(x, y, z\in R^N\) one has

  1. (1)

    \(0\le |x+y|^p-|x|^p-p|x|^{p-2}x\cdot y\le C|y|^p,\)

  2. (2)

    \(\left| |x+y|^p-p|x|^{p-2}x\cdot y-|x+z|^p+p|x|^{p-2}x\cdot z\right| \le C\left( |y|^{p-1}+|z|^{p-1}\right) |y-z|,\)

  3. (3)

    \(\left| |x+y|^p-|x+z|^p\right| \le C\left( |y|^{p-1}+|z|^{p-1}+|x|^{p-1}\right) |y-z|.\)

We set \(F_2=\Delta \phi (\nabla u_t\cdot \nabla \phi ), \, F_3=\Delta \phi (|\nabla \phi |^2),\, F_4(\phi )=\nabla u_t\cdot \nabla (|\nabla \phi |^2)\) and \(F_5(\phi )=\nabla \phi \cdot \nabla (\nabla u_t \cdot \nabla \phi )\), then we have the following lemma (see [20, Lemma 16]).

Lemma 10

Let \( \phi _1, \phi _2 \in X\). Then there exist \(C_1\) and \(C_2\) such that

  1. (1)
    $$\begin{aligned}{} & {} | F_2(\phi _2)-F_2(\phi _1)| \le 2 | \nabla u_t| | \Delta \phi _2| | \nabla \phi _2 - \nabla \phi _1|\nonumber \\{} & {} \quad + 2 | \nabla u_t| | \nabla \phi _2| | \Delta \phi _2 - \Delta \phi _1|, \end{aligned}$$
    (63)
  2. (2)
    $$\begin{aligned} \begin{array}{llll} | F_3(\phi _2)-F_3(\phi _1)|&{}\le | \Delta \phi _2|\left( | \nabla \phi _2 | + | \nabla \phi _1| \right) | \nabla \phi _2 - \nabla \phi _1| \\ &{} \; \; \; + | \nabla \phi _1|^2 | \Delta ( \phi _2 - \phi _1)| \end{array} \end{aligned}$$
    (64)
  3. (3)
    $$\begin{aligned}{} & {} | F_4(\phi _2)-F_4(\phi _1)|\le C_1\left( | \nabla u_t| | \nabla \phi _2| | D^2(\phi _2-\phi _1)|\right. \nonumber \\ {}{} & {} \left. + | \nabla u_t| | D^2 \phi _1| | \nabla \phi _2 - \nabla \phi _1|\right) , \end{aligned}$$
    (65)
  4. (4)
    $$\begin{aligned} \begin{array}{ll} &{}| F_5(\phi _2)-F_5(\phi _1)|\le C_2\left( | D^2 u_t| | \nabla \phi _2| | \nabla \phi _2 - \nabla \phi _1|+ | \nabla u_t| |D^2 \phi _2| | \nabla \phi _2 - \nabla \phi _1| \right. \\ &{} \qquad \left. + | \nabla \phi _1| |D^2 u_t| | \nabla \phi _2 - \nabla \phi _1| + | \nabla \phi _1| | \nabla u_t| |D^2(\phi _2 - \phi _1)|\right) . \end{array}\nonumber \\ \end{aligned}$$
    (66)
  5. (5)
    $$\begin{aligned} \begin{aligned}&| \nabla \phi _2 \cdot \nabla | \nabla \phi _2|^2-\nabla \phi _1 \cdot \nabla | \nabla \phi _1|^2|\\&=|(\nabla \phi _2 -\nabla \phi _1)\cdot \nabla | \nabla \phi _2|^2+\nabla \phi _1\cdot (\nabla | \nabla \phi _2|^2-\nabla | \nabla \phi _1|^2)\\&\le C |\nabla \phi _2 -\nabla \phi _1|\,|\nabla \phi _2|\, |D^2\phi _2|+|\nabla \phi _1|\, |\nabla \phi _2\\&\quad -\nabla \phi _1|\,|D^2\phi _2|+|\nabla \phi _1|^2|D^2(\phi _2-\phi _1)|\\ \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, A., Cowan, C. q-Laplace equation involving the gradient on general bounded and exterior domains. Nonlinear Differ. Equ. Appl. 31, 6 (2024). https://doi.org/10.1007/s00030-023-00900-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-023-00900-9

Keywords

Mathematics Subject Classification

Navigation