Skip to main content
Log in

On a planar Hartree–Fock type system

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

This work deals with the existence of solutions for a class of Hartree–Fock type system in the two dimensional Euclidean space. Our approach is variational and based on a minimization technique in the Nehari manifold. The main steps in the prove are some trick estimates from the sign-changing logarithm potential in an appropriate subspace of \(H^1({\mathbb {R}}^2)\) introduced by Stubbe [23] (see also Cingolani-Weth [8]).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Souto, M.A.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Figueiredo, G.: Existence of positive solution for a planar Schrödinger-Poisson system with exponential growth. J. Math. Phys. 60, 011–503 (2019)

    Article  Google Scholar 

  3. Ambrosetti, A., Colorado, E.: Standing waves of some coupled nonlinear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    Article  MathSciNet  Google Scholar 

  4. Badiale, M., Pisani, L., Rolando, S.: Sum of weighted Lebesgue spaces and nonlinear elliptic equations. Nonlinear Differential Equations Appl. 18, 369–405 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1–18 (2005)

    Article  MathSciNet  Google Scholar 

  6. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  Google Scholar 

  7. Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  8. Cingolani, S., Weth, T.: On the planar Schrödinger–Poisson system. Ann. Inst. H. Poincaré Anal. Non Linéaire. 33, 169–197 (2016)

    Article  MathSciNet  Google Scholar 

  9. Chen, S.T., Tang, X.H.: Axially symmetric solutions for the planar Schrödinger-Poissson system with critical exponential growth. J. Differential Equations 269, 9144–9174 (2020)

    Article  MathSciNet  Google Scholar 

  10. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differential Equations. 248, 521–543 (2010)

    Article  MathSciNet  Google Scholar 

  11. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb. Sect. A. 134, 893–906 (2004)

    Article  Google Scholar 

  12. D’Avenia, P., Maia, L. A., Siciliano, G.: Hartree–Fock type systems: existence of ground states and asymptotic behavior. Preprint, (2020). arXiv:2008.03191v1

  13. de Figueiredo, D.G.D.G., Lopes, O.: Solitary waves for some nonlinear Schrödinger systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 149–161 (2008)

    Article  MathSciNet  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics, Springer-Verlag, Berlin, (2001). Reprint of the 1998 edition

  15. Lions, P.-L.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)

    Article  MathSciNet  Google Scholar 

  16. Lieb, E. H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976/1977)

  17. Lieb, E.H., Simon, B.: The Hartree-Fock theory for Coulomb systems. Comm. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  18. Maia, L., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differential Equations 229, 743–767 (2006)

    Article  MathSciNet  Google Scholar 

  19. Palais, R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  20. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  21. Sirakov, B.: Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Comm. Math. Phys. 271, 199–221 (2007)

    Article  MathSciNet  Google Scholar 

  22. Strauss, W.A.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  Google Scholar 

  23. Stubbe, J.: Bound States of Two–Dimensional Schrödinger–Newton Equations. Preprint, (2008). arxiv.org/abs/0807.4059

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Maia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by CAPES/BRAZIL.

The second author was supported by CNPq/BRAZIL and FAPDF.

The third author was supported by CNPq.

The last author was partially suppoted by Grant 2019/2014 Paraíba State Research Foundation (FAPESQ), FAPDF and CNPq 308900/2019-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, J., Figueiredo, G., Maia, L. et al. On a planar Hartree–Fock type system. Nonlinear Differ. Equ. Appl. 29, 56 (2022). https://doi.org/10.1007/s00030-022-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00788-x

Keywords

Mathematics Subject Classification

Navigation