Skip to main content
Log in

Some Remarks on the Eigenvalue Multiplicities of the Laplacian on Infinite Locally Finite Trees

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider the continuous Laplacian on an infinite uniformly locally finite network under natural transition conditions as continuity at the ramification nodes and the classical Kirchhoff flow condition at all vertices in a L -setting. The characterization of eigenvalues of infinite multiplicity for trees with finitely many boundary vertices (von Below and Lubary, Results Math 47:199–225, 2005, 8.6) is generalized to the case of infinitely many boundary vertices. Moreover, it is shown that on a tree, any eigenspace of infinite dimension contains a subspace isomorphic to \({\ell^\infty({\mathbb N})}\) . As for the zero eigenvalue, it is shown that a locally finite tree either is a Liouville space or has infinitely many linearly independent bounded harmonic functions if the edge lengths do not shrink to zero anywhere. This alternative is shown to be false on graphs containing circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali Mehmeti F.: A characterization of generalized C -notion on nets. Integral Equ. Oper. Theory 9, 753– (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. von Below J.: A characteristic equation associated to an eigenvalue problem on c 2-networks. Lin. Alg. Appl. 71, 309–325 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. von Below J.: The index of a periodic graph. Results Math. 25, 198–223 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. von Below, J.: Parabolic network equations. 2nd ed. 3rd edition to appear (1995)

  5. von Below, J.: Can one hear the shape of a network. In: Partial Differential Equations on Multistructures. Lecture Notes in Pure and Applied Mathematics, vol. 219, pp. 19–36. Marcel Dekker Inc., New York (2000)

  6. von Below J.: An index theory for uniformly locally finite graphs. Lin. Alg. Appl. 431, 1–19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. von Below J., Lubary J.A.: Harmonic functions on locally finite networks. Results Math. 45, 1–20 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. von Below J., Lubary J.A.: The eigenvalues of the Laplacian on locally finite networks. Results Math. 47, 199–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. von Below J., Lubary J.A.: The eigenvalues of the Laplacian on locally finite networks under generalized node transition. Results Math. 54, 15–39 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. von Below J., Lubary J.A.: Isospectral infinite graphs and networks and infinite eigenvalue multiplicities. Netw. Het. Media. 4, 453–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. von Below, J., Gensane, T.: Massé, Some spectral estimates for periodic graphs. Cahiers du LMPA Joseph Liouville, vol. 84, (1999)

  12. Biggs N.L.: Algebraic graph theory. Cambridge Tracts Math. 67. Cambridge University Press, Cambridge (1967)

    Google Scholar 

  13. Cattaneo C.: The spectrum of the continuous Laplacian on a graph. Monatshefte für Mathematik. 124, 215–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chung, F.R.K.: Spectral graph theory. In: Conference Series in Mathematics, vol. 92. AMS, Rhode Island (1997)

  15. Cvetcović D.M., Doob M., Sachs H.: Spectra of graphs. Academic Press, New York (1980)

    Google Scholar 

  16. Diestel R.: Graph theory. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Lubary J.A.: Multiplicity of solutions of second order linear differential equations on networks. Lin. Alg. Appl. 274, 301–315 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lubary, J.A.: On the geometric and algebraic multiplicities for eigenvalue problems on graphs. In: Partial Differential Equations on Multistructures. Lecture Notes in Pure and Applied Mathematics, vol. 219, pp. 135–146. Marcel Dekker Inc., New York (2000)

  19. Lubary J.A., de Solà à-Morales J.: Nonreal eigenvalues for second order differential operators on networks with circuits. J. Math. Anal. Appl. 275, 238–250 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lumer G.: Equations de diffusion sur les réseaux infinis, Séminaire Goulaouic—Schwartz. XVIII.1–XVIII.9 (1980)

  21. Mohar B., Woess W.: A survey on spectra of infinite graphs. Bull. London Math. Soc. 21, 209–234 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nicaise S.: Spectre des réseaux topologiques finis. Bull. Sc. Math. 2e Série. 111, 401–413 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Volkmann L.: Fundamente der Graphentheorie. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  24. Woess W.: Random walks on infinite graphs and groups 138. Cambridge University Press, cambridge (2000)

    Book  Google Scholar 

  25. Wilson R.J.: Introduction to graph theory. Oliver & Boyd, Edinburgh (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim von Below.

Additional information

José A. Lubary was partially supported by Spain Government project MTM2011-27739-C04-01.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Below, J., Lubary, J.A. & Vasseur, B. Some Remarks on the Eigenvalue Multiplicities of the Laplacian on Infinite Locally Finite Trees. Results. Math. 63, 1331–1350 (2013). https://doi.org/10.1007/s00025-012-0271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-012-0271-9

Mathematics Subject Classifications

Keywords

Navigation