Skip to main content
Log in

The eigenvalues of the Laplacian on locally finite networks

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We consider the continuous Laplacian on an infinite locally finite network with equal edge lengths under natural transition conditions as continuity at the ramification nodes and classical Kirchhoff conditions at all vertices. It is shown that eigenvalues of the Laplacian in a L-setting are closely related to those of the adjacency and transition operator of the network. In this way the point spectrum is determined completely in terms of combinatorial quantities and properties of the underlying graph as in the finite case [2]. Moreover, the occurrence of infinite geometric multiplicity on trees and some periodic graphs is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Ali Mehmeti, A characterization of generalized C-notion on nets, Integral Equ. Operator Theory 9 (1986) 753–766.

    Article  MATH  Google Scholar 

  2. J. Von Below, A characteristic equation associated to an eigenvalue problem on c2-networks, Lin. Alg. Appl. 71 (1985) 309–325.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. von Below, Kirchhoff laws and diffusion on networks, Lin. Alg. Appl. 121 (1989) 692–697.

    Google Scholar 

  4. J. von Below, Parabolic network equations, 2nd ed. 1995, 3rd edition to appear.

  5. J. von Below, The index of a periodic graph, Results in Math. 25 (1994) 198–223.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. von Below, Can one hear the shape of a network? in: Partial Differential Equations on Multistructures, Lecture Notes in Pure and Applied Mathematics Vol. 219, Marcel Dekker Inc., New York, (2000) 19–36.

    Google Scholar 

  7. J. von Below, T. Gensane and E. Massé, Some spectral estimates for periodic graphs, Cahiers du LMPA Joseph Liouville Vol. 84, (1999).

  8. J. VON Below and J. A. Lubary, Harmonic functions on locally finite networks, Results in Math. 45 (2004) 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. von Below and J. A. Lubary, Laplacian and generalized transition operators on infinite networks, in preparation.

  10. N. L. Biggs, Algebraic graph theory. Cambridge Tracts Math. 67, Cambridge University Press, 1967.

  11. C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Monatshefte für Mathematik 124 (1997) 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Collatz, Spektren periodischer Graphen, Resultate der Mathematik 1 (1979) 42–53.

    Article  MathSciNet  Google Scholar 

  13. D. M. Cvetcović, M. Doob, H. Sachs, Spectra of graphs. Academic Press, New York, 1980.

    Google Scholar 

  14. N. Komma, Das Spektrum der fünften Keplerschen Ebene, Diplomarbeit an der Universität Tübingen, 1996.

  15. J. A. Lubary, Multiplicity of solutions of second order linear differential equations on networks, Lin. Alg. Appl. 274 (1998) 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  16. J. A. Lubary, Multiplicidad y valores propios no reales en problemas de contorno para ecuaciones diferenciales sobre redes, Doctoral Thesis UPC Barcelona, 2000.

  17. J. A. Lubary, On the geometric and algebraic multiplicities for eigenvalue problems on graphs, in: Partial Differential Equations on Multistructures, Lecture Notes in Pure and Applied Mathematics Vol. 219, Marcel Dekker Inc., New York, (2000) 135–146.

    Google Scholar 

  18. J. A. Lubary and J. deSolà-Morales, Nonreal eigenvalues for second order differential operators on networks with circuits, J. Math. Analysis Appl. 275 (2002) 238–250. 301-315.

    Article  MATH  Google Scholar 

  19. B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989) 209–234.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sc. Math. 2e Série 111 (1987) 401–413.

    MathSciNet  MATH  Google Scholar 

  21. W. Woess, Random walks on infinite graphs and groups, Cambridge Univ. Press 138, 2000.

  22. R. J. Wilson, Introduction to graph theory, Oliver & Boyd Edinburgh, 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim von Below.

Additional information

Partially supported by DGI-MCYT (BFM2002-04613-C03-01), Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Below, J., Lubary, J.A. The eigenvalues of the Laplacian on locally finite networks. Results. Math. 47, 199–225 (2005). https://doi.org/10.1007/BF03323026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323026

AMS Subject Classification

En]Keywords

Navigation