Skip to main content
Log in

Harmonic functions on locally finite networks

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Are there nonconstant bounded harmonic functions on an infinite locally finite network under natural transition conditions as continuity at the ramification nodes and classical Kirchhoff conditions at all vertices? We present sufficient criteria for such a network to be a Liouville space, while we show that a large class of infinite trees admit infinitely many linearly independent bounded harmonic functions. Finally, we show that the standard unit cube grid graphs and some of Kepler’s plane tiling graphs are Liouville spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. von Below, A characteristic equation associated to an eigenvalue problem on c2-networks, Lin. Alg. Appl. 71 (1985) 309–325.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. von Below, Parabolic network equations, 3rd edition to appear.

  3. J. von Below, The index of a periodic graph, Results in Math. 25 (1994) 198–223.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. von Below, Can one hear the shape of a network? in: Partial Differential Equations on Multistructures, Lecture Notes in Pure and Applied Mathematics Vol. 219, Marcel Dekker Inc. New York, (2000) 19–36.

    MathSciNet  Google Scholar 

  5. J. von Below and J. A. Lubary, On the Laplacian on locally finite networks, in progress.

  6. N. L. Biggs, Algebraic graph theory. Cambridge Tracts Math. 67, Cambridge University Press, 1967.

  7. C. Cattaneo, The spectrum of the continuous Laplacian on a graph, Monatshefte für Mathematik 124 (1997) 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Collatz, Spektren periodischer Graphen, Resultate der Mathematik 1 (1979) 42–53.

    Article  MathSciNet  Google Scholar 

  9. D. M. Cvetcović, M. Doob, H. Sachs, Spectra of graphs. Academic Press New York, 1980.

  10. J. A. Lubary, Multiplicity of solutions of second order linear differential equations on networks, Lin. Alg. Appl. 274 (1998) 301–315.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. A. Lubary, Multiplicidad y valores propios no reales en problemas de contorno para ecuaciones diferenciales sobre redes, Doctoral Thesis UPC Barcelona, 2000.

  12. J. A. Lubary, On the geometric and algebraic multiplicities for eigenvalue problems on graphs, in: Partial Differential Equations on Multistructures, Lecture Notes in Pure and Applied Mathematics Vol. 219, Marcel Dekker Inc. New York, (2000) 135–146.

    MathSciNet  Google Scholar 

  13. B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc. 21 (1989) 209–234.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Nicaise, Spectre des réseaux topologiques finis. Bull. Sc. Math. 2e Série 111 (1987) 401–413.

    MathSciNet  MATH  Google Scholar 

  15. W. Woess, Random walks on infinite graphs and groups, Cambridge Univ. Press 138, 2000.

  16. R. J. Wilson, Introduction to graph theory, Oliver & Boyd Edinburgh, 1972.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim von Below.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Below, J., Lubary, J.A. Harmonic functions on locally finite networks. Results. Math. 45, 1–20 (2004). https://doi.org/10.1007/BF03322993

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322993

Keywords

AMS Subject Classification

Navigation